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Institute of Information Science and Technologies (ISTI) of National Research
Council (CNR), via Moruzzi, 1, Pisa, Italy

{hanna.kavalionak,emanuele.carlini,pietro.cassara,
carlo.meghini}@isti.cnr.it

Abstract. A precise and dynamic visual coverage of a given area is an
essential task in many smart contexts, ranging from civil communities
to military applications. Due to the last years advancement in hardware
miniaturization and efficiency, area coverage is often performed with a
combination of static and moving devices, such as unmanned aerial vehi-
cles (drones). Drones are useful to cope with the highly unpredictability
and dynamicity of environments, but require specific and efficient solu-
tions toward and efficient area coverage. In this paper we proposes an
initial work toward a drone-based approach for the task of area coverage.
In particular, we focus our analysis on the following points: (i) decentral-
ized consensus for movement planning, and (ii) the integration of cloud
computing infrastructures and technologies for computation offloading,
both for image analysis and movement planning.

Keywords: Decentralized consensus · Drones · Distributed tracking
Dynamic environments

1 Introduction

The active monitoring of a geographical area through sensors is a fundamental
and widespread aspect for a wide range of applications including private surveil-
lance, crowd tracking, and public security. Active monitoring can be exploited in
a number of both military and civil applications, such as surveillance of national
borders to control immigration/emigration or controlling the flow of tourists
in large cities. A core aspect of active monitoring is represented by the task
of area coverage, i.e. the ability to place sensors in order cover the considered
area in an optimal way. Since in many applications the condition of the moni-
tored area can change abruptly, the best way to place sensors also change over
time. An infrastructure made of static sensors can be not enough to cope with
unexpected events that can result from the inherent unpredictability of crowd
behaviour and the environment, such as for example a broken camera or unex-
pected visual obstacles. In addition, ground sensors takes time to be installed,
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and therefore cannot be deployed in an unexpected situation if not foreseen in
advance. Also, the monetary investment for the monitoring of a single event can
not be justified in certain scenarios (e.g. research activities).

Therefore, a crucial aspect is the degree of adaptability that sensors (e.g. cam-
eras, temperature, sound, etc.) are able to exploit. In order to cope with highly
unpredictability and dynamicity of coverage activities, recently several approaches
exploits Unmanned Aerial Vehicles (UAVs, informally known as drones) as a valid
option to carry out many different kind of monitoring [15]. The technological
advancements of UAVs rapidly increased in the recent years mostly due to mil-
itary reasons, nevertheless most of the technology is also available to civil and
research purposes. Drones can be deployed to different locations on demand, with
a very short notice and without requiring a dedicated static infrastructure placed
beforehand. Their behaviour can be reprogrammed while in mission, making them
suitable to adapt to fast and unpredictable events within the same mission.

In this paper we consider the challenge of an active area coverage by means
of a fleet of UAVs. For the purpose of this paper, we assumes UAVs are equipped
with means to communicate to each other and with the sensors necessary for their
mission. The usage of a fleet of drones presents multiple benefit when compared
to a single UAV in terms of: (i) size of the coverable area, (ii) duration of coverage,
(iii) coverage redundancy. However, a careful orchestration is required in order
to accurately plan the movements of UAVs in order to obtain the best coverage
possible. A straightforward way to organize the movement of UAVs is to employ
a centralized entity (e.g. a server) that continuously collects their position and
generate the new movement plan. However, the effectiveness of this solution is
limited, as it suffers in terms of robustness (what if the server crashes?) and
scalability (the frequency and the number of communication can saturate the
server, which is not able to produce the new movement plans in time). Therefore,
in we advocate a decentralized and distributed approach, in which the drones
self-organize their movement toward an effective active area coverage.

Besides the self organization of the fleet, we also draw several considerations
in relation to the utilization of cloud computing technologies and mechanisms
for the image analysis activity of the drones. In particular, we consider the case
in which specific image analysis techniques are too computationally heavy to
be executed by drones (e.g. due to battery constraint) and it would be more
effective to communicate the images to be analyzed to a cloud server which can
return back the results of the computation. We analyze this approach according
to the work already done in the field of mobile cloud, in which mobile devices
(typically smartphones) offload their computation to nearby cloud computation
units (cloudlet).

The paper is organized as the following. Section 3 presents the reference archi-
tecture and the envisioned scenario considered in the paper. Section 4 discusses
a preliminary model for the area coverage and its exploitation in a best-of-n
problem formulation. Section 5 elaborates the possible integration of cloud com-
puting technologies for the offloading of computation in the considered scenario.
Finally, Sect. 6 concludes the paper.
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2 Related Work

The task of self-organize the movements of a number of entities in a decentralise
fashion is not new, and it might be referred to as flocking [11]. Generally, such task
can be abstract as a specialized version of distributed consensus, and it has been
tackled in many research fields, although often with different nomenclature and
purpose. For example, in the field of multi-agent systems, holonic systems define an
organizational model of agents based on self-similarity into “super-agents”? that
are seen as single agents from the outside [7]. In peer-to-peer many approaches rely
on self-organization techniques to organize the peers of the network in overlay for
multiple purposes, such as area coverage [3] or in order to estimate a distribution
of network parameters [12].

Recently, decentralized and peer-to-peer flocking algorithms have been applied
to drone networks with the aim of self-organizing a fleet of drone toward the com-
pletion of complex task. The literature about this topic is very vast; hereby we
provide several pointers to recent results. For example, Vásárhelyi et al. [17] pro-
vides an algorithm solution based on short-term repulsion and long-range attrac-
tion of drones, and it is validated via a numerical simulation. Another recent
approach, Yuan et al. [18] proposed a decentralized model predictive control
(DMPC) flocking algorithm to self-organize the movement planning of drones, by
using the XBee communication technology.

Several recent works specifically dealt with some version of the problem of
area coverage and in specific application domains. For example, [2] propose the
usage of drones for area coverage in agricultural applications. Rosalie et al. [13]
proposed an ant-colony algorithm paired with a way-points based mobility model
to improve the area coverage of drones. The approach of Schleich et al. [15] is
to maintain a connected network among the drone by exploiting a tree-based
overlay network, as well a mechanism that allows drone to predict positions of
one-hop neighbours in the tree.

Most of the above works do not consider the remaining level of the battery for
the drones in the system when planning for movement or actions. However, there
are few approaches that take batter in consideration for different purposes. For
example, Messous et al. [10] propose an approach that tries to keep network con-
nectivity taking into account the battery level of the drones in a fleet. Although
in a preliminary shape, our approach differentiates from the above ones as it
embeds the following features: (i) consideration of battery consumption in the
decentralized modeling for area coverage, and (ii) integration of cloud computing
technologies for the offloading of computation devoted to area coverage activity.

3 Reference Scenario and Architecture

The envisioned scenario is depicted in Fig. 1. In such scenario, groups of persons
move across the considered area. The area is potentially large and can contains
obstacles such as trees or buildings. The area can already be equipped with static
ground sensors devoted to area coverage that are interconnected via a wireless
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Cloud
Datacenter

Fig. 1. The envisioned drone-assisted cloud-based crowd control scenario

or wired network. The typical operations conducted by these sensors include the
estimation of the crowd density, motion and behaviour. However, an infrastruc-
ture made solely of static sensors can be not enough to cope with unexpected
events that can result from the inherent unpredictability of crowd behaviour
and the environment, such as for example a broken camera or unexpected visual
obstacles. In addition, ground sensors takes time to be installed, and therefore
cannot be deployed in an unexpected situation if not foreseen in advance. Also,
the monetary investment for the monitoring of a single event can not be justified
in certain scenarios (e.g. research activities). Therefore we advocate a scenario
in which sensor-equipped drones complement with the ground sensor network in
order to resolve many of the aforementioned issues. In such scenario a fleet of
drones flies above the area, each drone connected to each others and with the
network of ground sensors. Drones can be used as highly-moving computational
and storage units, allowing for a dynamic access point toward remote cloud data-
centers. They can be deployed to different locations on demand, with a very short
notice and without requiring a dedicated static infrastructure placed beforehand.
Their behaviour can be reprogrammed while in mission, making them suitable
to adapt to fast and unpredictable events within the same mission.

In the light of aforementioned vision, the project focuses on two tightly con-
nected aspects:

– a scalable and decentralized support for drones-to-drones and drone-to-ground
communication, with the aim of disseminate information about both the state
of the sensor and behaviour of the crowd in the drone-assisted area coverage
network.

– an effective and QoS-aware orchestration of the computation related to area
coverage in terms of computational resource selection, task management, and
offloading to remote computational resources, organized by means of the Cloud
Computing paradigm.

An high level overview of a reference architecture for the internal software
of the drone is depicted in Fig. 2. On the bottom level of the architecture lies
the drone hardware. We assume drones to be equipped with sensor for manoeu-
vrability (e.g. GPS, rotors controller, etc.) and image acquisition (e.g. cameras).
We also assume they are equipped with relatively high battery capacity and
computational power.
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The communication manager module will take into account the management
of the drone-to-drone and drone-to-ground communications. Since communica-
tion is a costly operation, a particular care will be taken such that information
dissemination will be done in an effective way, maximising the usefulness of infor-
mation sent. The component will also take into account the unreliability aspects
of the communication channels. The information obtained by means of the com-
munication module will feed the local context manager. The context models the
view of a drone about its surrounding, and contains information of other drones,
ground sensor and about the crowd. The information of drones range from their
positions, direction and speed, to battery level and computational capacity.

Architecture of drone

Crowd
Tracking

Movement
Planner

Application Manager

Local Context Manager

Communication Manager

Drone Hardware

Fig. 2. High-level architec-
tural view

An important features of the context is the
exploitation of prediction algorithms to predict
ahead the context, which will allow the drones
to plan in advance their behaviour so to possibly
anticipate or avoid critical situations. On the top
of the stack, the application manager orchestrates
the computational aspect of the drones. The com-
putational tasks can be related to the decentral-
ized organization of the fleet and area coverage
activities. The movement planner decides the tra-
jectory of the drone considering the local context,
and in such a way to globally optimize the area
covered by the fleet. The crowd tracking module
will employ image recognition algorithms already
existing in literature in order to acquire information and build models of crowd
behaviour. The application manager will coordinate the computation underly-
ing these modules by deciding whether to execute the related tasks locally or
remotely according to the local context.

4 A Model for Area Coverage

In general terms, the targeted objective is to cover as much area as possible by
exploiting a fleet of drones, while minimizing battery consumption. The exact
meaning of cover depends on the specific application scenario; In this context
we consider an area coverage devoted to crowd control, in which the main task
carried out by drones drones acquire images of a certain area and perform some
analysis with the aim of recognize certain items (i.e. crowds, people, objects).
Therefore, our problem can be formulated as: for a given accuracy associated
with the recognition/classification of the items, we have to find/compute a com-
bination of states for the drones that maximizes the surveillance area coverage
while minimizing their battery energy consumption.

We consider each drone having a state composed by three parameters: (i) its
geographical (GPS) position (x, y), where x and y are linear coordinates; (ii) the
altitude h (distance from the ground), which also specify the area coverage S;
and (iii) energy level of the battery E. The task is then to find the proper
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combination of the states that would maximize the area coverage for the given
accuracy while minimizing the battery level consumption.

The proposed approach considers to divide the behaviour of the drones in
two phases:

1. A local adjustment phase in which drones applies the necessary changes in
order to respect the given accuracy;

2. A phase in which (i) drones exchange each other possible option plans for
their positioning, and (2) reach a consensus on which plan to apply. This
phase exploit a best-of-n formulation to reach the consensus.

In the following we provide a preliminary analysis and modelling of the two
phases.

4.1 Local Adjustments for Accuracy

The given recognition accuracy is reached by the drones by operating locally on
two parameters:

– The altitude of the drone h (Fig. 3). According to its altitude, a drone can
cover a different portion of an area with a different level of details. A lower alti-
tude allows to receive more details of the items of interest and, presumably, to
perform a more detailed and precise recognition/analysis of such items. Nev-
ertheless, in this case the coverage area of the drone decreases together with
the attitude S = πr2, where r is the radius of the coverage circle. Considering
the φ as angle of horizontal field of view of the drone to be fixed, while h
changes in time we can derive the area coverage radius as:

r(t) = h(t) ∗ tan(
φ

2
) (1)

– The specific algorithm used for image recognition. This choice has an impact
on battery consumption due to different complexity of the computation. Nor-
mally, the more accurate algorithm is for the recognition, the more energy
consumption computation has to be executed. Hence decreasing the accuracy
of the recognition can decrease the required energy consumption.

Therefore, we can derive the accuracy of the recognition by the drone as
a function of its attitude and energy consumption. In other words given the
required accuracy and the local state of the battery the drone can compute
in what way to satisfy the accuracy, by: (i) decreasing the covered area; (ii)
increasing the computation complexity of the algorithm increasing battery con-
sumption; or (iii) applying a combination of both these approaches.
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4.2 Best-of-n Formulation

Sr

h

Fig. 3. Area coverage
for a drone according
to its height

Self-organization is a popular research topic in robot
swarm, especially in its Best-of-n Problem formulation
[16]. In particular, the best-of-n problem refers to prob-
lem of collective decision making done by a set of agents.
According to Valentini et al. [16] “The best-of-n problem
requires a swarm of robots to make a collective decision
over which option, out of n available options, offers the
best alternative to satisfy the current needs of the swarm”.
As a consequence, a decision among the options is taken
according to the concept of majority (i.e. when a suffi-
cient number of agents favour a specific option), which
generally depends on the specific application.

Valentini et al. also categorize the best-of-n prob-
lems according to two specific characteristics of an
options, namely quality and cost. Both these characteris-
tics depend on the application scenario considered. A best-of-n problem is then
categorized according to the symmetry or asymmetry of both quality and cost. If
in a given problem all the options have the same quality, the n-problem is sym-
metric with respect to quality. Otherwise if at least two options have different
quality, then the problem is asymmetric. The same reasoning goes for the cost.

Few assumptions are necessary to frame the active area coverage defined in
this paper into a discrete best-of-n problem. The first assumption is done by
making discrete the problem of coordinate a set of drones (flocking). This can
be done by considering the following two factors: (i) limit the area of actions
of drones and (ii) divide this area into a grid of tiles, and the movement of
the drones are defined as movement from one tile to another. With these two
assumptions, the flocking problem goes to continuous to discrete, as the possible
actions (movements) of the drones are finite. The second assumption is that the
drones have in place the proper protocol an technology (such as XBee [18])
to communicate to each other in order to exchange the computed plans and to
select the one that best satisfy the area coverage problem.

By applying the same criteria used by Valentini et al. we characterize the area
coverage as a best-of-n problem, by associating the quality of a solution with the
amount of area covered (at the given quality) by the fleet, and the cost with the
amount of energy spent by drones in order to provide such coverage. According to
this formulation, both quality and cost are asymmetric. The interaction between
cost and quality can be defined as synergic or agnostic: in the former case the
best option has the best quality with the minimum cost, in the latter the best
option results in a tradeoff between cost and quality. In our case the interaction
between area coverage and energy consumption is synergic, as the best solution
would be the one that maximizes the area coverage while minimize the energy
consumption.
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5 Offloading to Cloud Computing

In the last years, many approaches have dealt with scenario in which computation
is offloaded from mobile devices to cloud datacenters [6]. The benefit of such
offloading is to improve the capacity of mobile and thin devices, usually limited
in terms of CPU, memory and battery life, so that even simple devices can run
complex and demanding applications. Among the many proposals, MAUI [5] and
CloneCloud [4] are based on virtual machine migration and focuses on offloading
of computation from mobile devices to remote servers at execution time, allowing
the developers of applications to decide which computation can be offloaded.

In terms of computational resources, Cloud computing could represent an
ideal back-end solution to manage the computation related to crowd tracking
and image processing [8,9]. However, due to the large amount of data collected,
which needs to be transferred to the cloud, and the inherent dispersion of entities
that performs data collection, it can be infeasible or inconvenient to transfer
the computation toward a large remote datacenter. This is specially true in
out envisioned scenario, as the behaviour of the crowd for the purpose of area
coverage shall be identified fast such to allow the drone fleet to adjust their
position.

This scenario points toward the case in which several ground sensors, or some
powerful drone, assume the role of cloudlet [14], while normal drones the role of
mobile devices. In the cloudlet model, drones would offload their computation to
cloudlets, which are relatively small computational units connected with the full
blown remote cloud server. Cloudlets are deployed locally to the area of interest
and often placed in common and crowded areas to achieve physical proximity
with mobile devices. This aspect provides devices with low latency and high
bandwidth connections, thereby allowing an interactive response for demanding
applications.

The approaches defined for cloudlet currently developed target mobile devices
like smart-phones or laptops. The difference with respect to our scenario is the
fact that offloading from smart-phones does not affect the context of the cloudlets
or the devices. Instead, in our scenario the offloading also affects the behavior of
a drone, which in turns can affect the whole fleet. In other terms, the decision
whether to offload is not only affecting the quality of the application but poten-
tially affects the area coverage scenario as a whole, for example by modifying
the behavior of the other drones in the fleet. Therefore, we plan to adapt exist-
ing or design new distributed algorithms that: (1) orchestrate the computation
also considering the effect that offloading can have in all the entities related
to the crowd tracking, and (2) perform fast and effective brokering of cloudlet
resource [1], in order to guarantee the quality of service demands from the crowd
tracking tasks.

6 Conclusion

The organization of the activities of a fleet of drones is a relevant task in many of
today’s smart environment. In this paper, we present several initial considerations
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about the area coverage, i.e. the activity devoted to the analysis of an area through
image analysis. Specifically, we analysed the problem of decentralized consensus
for movement plan in a best-of-n problem formulation, and we reviewed the cur-
rent trends and approaches for computation offloading, specifically for image anal-
ysis, in the frame of cloud computing technologies. As future work, we plan to
integrate the analysis provided in the paper into a concrete proposal, both from
a technological and algorithmic viewpoints.
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