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Abstract. Due to fast distribution of powerful, portable processing
devices and wearables, the development of learning-based IoT-applications
for athletic or medical usage is accelerated. But besides the offering of quan-
titative features, such as counting repetitions or distances, there are only
a few systems which provide qualitative services, e.g., detecting malposi-
tions to avoid injuries or to optimize training success.

Therefore we present a novel, holistic, and sensor-based approach for
qualitative analysis of asynchronous, non-recurrent human motion. Fur-
thermore, we deploy it to automatically assess the difficulty level of boul-
der routes on basis of climbing movements. Within a comprehensive study
encompassing 153 ascents of 18 climbers, we extract and examine features
such as strength, endurance, and control and achieve a successful classifi-
cation rate of difficulty levels of more than 98%.
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1 Introduction

Applications targeting usage within the athletic context and based on smart-
phones as well as on wearables are ubiquitous by now. Commonly, they provide
customized workout plans or count quantitative qualities, while the provision of
qualitative feedback exists only sparsely. Therefore, we developed a procedure
for qualitative analysis of climbing motion in order to automatically assess the
difficulty of boulder routes. In that context, the term boulder route comprises
relatively short climbing routes of significantly higher difficulty (compared to
normal climbing routes). Due to their commonly low height, they are climbed
without safety equipment. Because of the varying and merging complexities of
boulder routes as well as the strong dependence on a climber’s individual skills,
an impartial assessment of a route’s level of difficulty is a tough task. In the best
case, consequences of an incorrect assessment may be the frustration of a climber
or minor injuries due to unfamiliar moves or physical overload. But in the worst
case, severe accidents and fatal injuries may occur (e.g., due to a climber’s lack of
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skills, wrong appraisal, or hubris) and lead to complex, dangerous, and expensive
rescue expeditions.

In order to solve such issues, we developed a distributed sensor system
capable of holistic capturing and analysis of recurrent human motion in real-
time [1,2]. Now, we extend the underlying concepts and develop a novel proce-
dure for qualitative motion assessment relying on asynchronous, non-recurrent,
and multi-dimensional timeseries (see Sect.3). In order evaluate its capabilities
we conducted a study encompassing climbing data of 18 participants for 153
ascents on different boulder routes which are labeled with difficulty levels of the
Fontainebleau technical grades scale (see Sect. 4). During analysis we prove that
our approach is capable of assessing difficulty levels of boulder routes with a
success rate of more than 98%. Finally, Sect.5 sums up our findings, discusses
open issues and provides an outlook onto future research.

2 Related Work

In the following, we present existing work dealing with human activity recog-
nition as well as the analysis of climbing techniques and climbing style. Pan-
siot et al. show that it is possible to distinguish different climbing styles by
extracting features which reflect a climber’s fluidity, speed, endurance, and
strength-to-weight ratio out of an ear-worn accelerometer [6]. Ladha et al. present
ClimbAX, a system which also tries to assess a climber’s skills by utilizing sim-
ilar features extracted from two hand-worn sensors [5]. Both approaches pro-
vide interesting input concerning qualitative feature engineering for climbing
activities. Kosmalla et al. introduced a concept for automated recognition of
climbing routes and presents state-of-art results for that use-case [4]. Still, this
approach is not capable of a more generic classification which is necessary to
determine a routes level of difficulty in an automated, generic, and precise way.
In [2] we present a distributed sensor system called SensX, which allows to
capture the whole human body’s acceleration and rotation information among
other data (i.e., lighting, temperature, barometric pressure, etc.). In [1] we utilize
this system as a basis for qualitatively assessing complex and recurrent human
motion and demonstrate its capabilities for the use-case of body weight exer-
cises. Thereby, we present state-of-the-art results with a successful classification
rate of 99.3% for qualitative assessment and 100% for sheer activity recognition.
Though this concept is not suitable for processing asynchronous, non-recurrent
motion information, it still functions as a basis for our concept, which is intro-
duced in the following.

3 A Concept for Automated Assessment
of Boulder Routes

In contrast to the assessment of recurrent human motion as proposed in [2]
climbing activities may not be described by features like similarity, periodic-
ity, or runtime. One reason for the difficulty of using temporal features is that
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different boulder and climbing routes are of significantly varying lengths and
consistencies. Together with skill-dependent ascent times, that makes it hard to
find generalizable, time-dependent features for a whole climbing activity. The
lack of periodicity results in the fact, that comparison to qualitatively labeled
patterns is also not feasible, e.g., a pushup of good quality vs. one of bad quality.
To overcome those issues, we use some assumptions based on climbing theory:
an increased level of route difficulty is indicated by inaccurate gripping and
increased use of strength during transition periods, while a trembling of the
climber’s limbs occurs more often within rest periods because of exhaustion and
imperfect control. The core skills control, stability, speed, and economical use of
strength are harder to achieve for difficult routes and therefore seem suitable as
a theoretical basis for feature engineering [3,5,6].

3.1 Tracking Human Motion Information

In order to track rotation, acceleration, and temporal information occurring
while climbing, we applied the SensX sensor architecture mentioned in Sect. 2
as a technical basis. It allows tracking of the human body’s limbs and provides
an integrated device for realtime processing of incoming sensor data. The four
external MBientLab sensor platforms (right arm, left arm, right leg, left leg)
provide sample rates of roughly 40 Hz while the processing unit (chest) provides
50 Hz for acceleration and 100 Hz for rotation data. All devices are connected
by Bluetooth Low Energy (BLE) and are synchronized by the processing unit.
Output of the SensX system are 30 individual sensor data streams: acceleration
(X-, Y-, and Z-axis) and rotation (X-, Y-, Z-axis) for 4 external sensor platforms
plus the processing unit.

3.2 Preprocessing and Feature Engineering

Subsequently, we describe our advance towards the extraction of an expressive
feature set. First, the actual climbing activity is identified and segmented into
transition and rest periods (see Sect.3 and Fig. 1a). Afterwards, we extract our
features needed later on for supervised learning.

Segmentation. Generally, a climbing activity takes place in between a tem-
poral interval At and has a start time ¢, as well as an end time t.. For further
analysis, this interval needs to be distinguished from interfering activities first,
e.g., walking or standing. Therefore, an extended approach of [5] respecting the
climber’s hands positions for activity recognition is utilized: Fig. 1la depicts the
acceleration of the right hand including t,, and t... Within our sensor setup,
the hand’s acceleration along the Y-axis indicates, whether the climber’s arm is
currently oriented upwards or downwards.

Using that assumption, we sequentially process the acceleration information
of both hands in an overlapping sliding window of 750 ms length. If the mean
acceleration in a frame is greater than zero, the arm points upwards and a
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Fig. 1. (a) Acceleration of the right hand during a boulder session with rest (green)
and transition periods (grey), (b) shows the chest sensors acceleration. (Color figure
online)

describing flag f is set true. If both arms point upwards for multiple frames, the
climbing activity has started and t, is marked by the beginning of the first frames
where f, and f; are true. The climbing activity ends as soon as both hands are
pointing downwards for multiple frames, whereby ¢. is indicated by the beginning
of the first frames where f, and f; are false. In order to prepare for the actual
feature extraction, the climbing activity now becomes segmented into rest and
transition periods. The sum of the acceleration’s standard deviations (X, Y, Z)
indicates the released energy potential for each window frame: S = 5, + S5, +5..
If S is greater than an empirically determined threshold, the frame belongs to a
transition period, else it indicates a rest period.

Feature Extraction. Based on the core skills mentioned in Sect.3, we
extracted 163 features for each boulder route out of the before segmented rest
and transition periods. Each external platform, is described by 2 %9 % 2 = 36
features (9 transition period features and 9 rest period features for acceleration
and rotation, respectively). Broken down to each period category we use (1) the
average means of all axis m,, m,, and m., (2) their standard deviations s, sy,
Sz, (3) the maximum value of the individual sums of all standard deviations of
all existing periods within a category Ssmaz, (4) their average mean Sgmean and
(5) the standard deviation of all sums of standard deviations sss:4. E.g., in case
of transition periods, consistent values for (1) and (2) imply a stable control
and stability, while (3), (4), and (5) give hints onto the amount of expended
energy and therefore strength. In case of rest periods, a higher value implies a
lack of control and stability. As depicted in Fig.la, the information provided
by the processing unit’s sensors is much less distinct than that of the external
sensor devices (see Fig. 1b). This makes it hard to categorize it into transition
and rest periods. Reason for that is the fact that during climbing the limbs are
much more in motion than the chest. Therefore, we extracted only 18 features
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for both period categories together. Finally, we added the ascents duration At
as a single temporal feature to the created feature vector.

4 Evaluation

For performance evaluation, we conducted a study encompassing 18 climbers per-
forming 153 ascents for 13 different boulder routes. 11 participants were begin-
ners while 7 had climbed or bouldered before — in average the participants had
1.69 years of relevant experience. The 13 routes were categorized into the three
color groups blue, sweden (yellow and blue), and green. Each color matches a
difficulty range of Fontainebleau technical grades, the most widely used grading
system for boulder routes in Europe. According to that, blue is mapped to the
grades la-2c, sweden encompasses 3a-4b and green matches 4b-5c. In order to
enable as much participants as possible to complete the whole study, the tracked
routes were of comparably low difficulty.

4.1 Automated Identification of Difficulty Levels

During evaluation, we utilized different supervised machine learning algorithms
which are common in related work as well as AutoWeka for automated hyper
parameter optimization (HPO). Preceding experiences during the analysis of
recurrent timeseries made us assume initially that a sensor setup which covers
all limbs as well as an athlete’s chest is perfect analyzing athletic movements.
But as depicted in Fig. 1c, the chest sensor provides only vague information for
climbing activities (e.g., compared to the hand sensor, see Fig.la). Hence, we
developed a more fine-grained evaluation approach and examined different sen-
sor configurations as well as their influence onto the classification results, as
shown in Table1l. As indicated before, the inclusion of the chest sensor’s fea-
tures never improves the results significantly (see Random Forest (RF), Support
Vector Machine (SVM)) while in other cases the results are even better if the
chest features are not observed at all (see C4.5, Naive Bayes (NB), HPO). In
general, the chest sensor’s features achieve comparably low success rates if exam-
ined isolated. The best results are achieved by using only the limb’s features and

Table 1. Classification results for different classifiers and sensor configurations (all
sensors, hands only, legs only, chest only, limbs only) and the average training time.

Classifier All Top Bottom | Chest |Limbs | Duration (avg.)
Random Forest | 79.74% | 74.51% | 71.24% | 64.71% | 79.01% | 104 ms
C4.5 67.32% | 57.52% | 58.82% | 56.73% | 68.63% | 20 ms

Support Vector | 86.93% | 74.51% | 85.0% | 75.82% | 86.27% | 40 ms
Naive Bayes 71.24% | 66.67% | 62.09% | 49.02% | 75.82% | 8 ms
HPO 89.54% | 79.74% | 82.34% | 60.78% | 98.04% | 327 ms
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Fig. 2. Confusion matrices for classification results: (1) MLP and only limb features;
(2) SVM and all features; (3) C4.5 and only bottom features. (Color figure online)

building our model with an hyper parameter optimized Multilayer Perceptron
(MLP), a neural network which has a nonlinear activation function and utilizes
backpropagation for training purposes. Hence, we are able to classify the diffi-
culty level of different routes with a success rate of 98.04%. Figure 2 shows the
distribution of classified instances for different setups and classifiers within con-
fusion matrices. Especially in (3) it is strongly apparent, that wrongly classified
instances are mostly assigned to a neighboring level of difficulty. This illustrates
that a color always contains a range of difficulty grades and that neighboring
colors may also encompass intersecting grades.

5 Conclusion

Within this paper, we presented a novel approach for analyzing asynchronous
and non-recurrent human motion. Therefore, we first track climbing motion with
the SensX sensor system, then we detect and segment climbing activities from
interfering activities and develop an expressive feature set which is capable of
describing non-recurrent and asynchronous human motion, i.e., climbing, in a
qualitative way. To validate our approach and to demonstrate its capabilities, we
conduct a comprehensive study and classify different difficulty levels of boulder
routes with a success rate of more than 98%.

But despite these promising results, we are also aware of still unsolved chal-
lenges. E.g., a more fine grained classification concept could solve issues with
incorrect assignments of instances to neighboring difficulty levels. Moreover, we
currently regard only routes of easy and intermediate difficulty while charac-
teristics of tough routes such as strongly overhanging rocks and tiny grips are
not depicted within our feature set. These issues as well as others are subject of
ongoing research.
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