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Abstract. Claudication is a cramping pain that is worsened by walking
and relieved with rest. It is caused by inadequate blood flow to the leg
muscles because of atherosclerosis. Recently, smartphones and their sen-
sors have been proposed in the context of mobile health to monitor gait.
However, their use remains disputed: objections concern the quality of
the collected data. Therefore, the work presented in this paper proposes
to study three main sources of noise observed in smartphone accelerome-
ters and to objectively assess their impact on claudication detection. To
do so, we first observe three noise sources in four different smartphones
to get an idea of their ranges; we second compare the smartphones’ sig-
nals to a ground truth from a vision-based system and third propose to
detect claudication by estimating duty cycle from the vertical accelerom-
eter signal and to evaluate the impact of the three noise sources on this
basis.
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1 Introduction

Injury to a lower limb may disrupt natural walking. In intermittent claudica-
tion, significant differences can be observed in kinematic parameters as cadence,
stance and swing times and step width when compared with healthy controls
[1,2]. Hence, an accurate motion tracking system is needed to observe these dif-
ferences. Several human motion tracking systems exist. The most famous are
vision-based systems made popular from applications in sport analysis [3,4]
and lead to the 3D localization of the patient’s limbs by combining the data
of several cameras. Markerless systems [5] follow the patient’s contours while
marker-based systems, such as VICON [6], follow either light-reflecting mark-
ers or light-emitting diodes attached to the patient. Such systems enable precise
localization but they are expensive, cumbersome and therefore can not be used in
outpatient care units or at home. Recently, smartphones and their sensors have
been proposed to address theses problems [7]. In smartphone-based systems, the
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patient carries a smartphone and uses its sensors to capture his motion without
interfering with his natural behavior [8,9] by integrating measurements of a GPS,
accelerometer and/or gyroscope. Nevertheless, the use of smartphones and their
low-cost sensors remains controversial in the medical community. Although the
miniaturized and non-invasive aspect is attractive, objections concern the quality
of the collected data as well as the reliability of the associated software technolo-
gies in a clinical context. In this context, our work addresses three issues. The
first one aims to characterize three main sources of noise (sampling jitter, rate
and quantification) observed in the accelerometers of smartphones to assess their
ranges. The second one seeks to build a ground truth from a high frame rate
video camera for comparison with the signals from the smartphones. Finally, the
third one evaluates from the degraded signals (according to the characteristics
identified in the first section) of the ground truth (built in the second section)
the detection capacities for claudication.

2 Noise Study

Concerning the noise, we decided to study three characteristics: the quantifica-
tion for which the information is readily available on the web, the sampling rate
and jitter that can be easily obtained from simple acquisitions. Other sources of
electronic noise (thermal noise, shot noise, flicker noise) have not been considered
because they are much more difficult to estimate. In order to study the noise
characteristics of the smartphone accelerometers, we had four different devices at
our disposal: respectively a Samsung S6 (380 euros), a Samsung A5 (270 euros),
a Samsung A3 (220 euros) and a LG Optimus F6 (130 euros).

Quantification. Most of the sensors in smartphones are MEMS (Microelec-
tromechanical systems) based. The ADXL335 and ADXL345 are two of the most
popular. According to their technical documentation [10], the output precision
varies from 8 bits to 13 bits.

Sampling Rate. To estimate the sampling rate we performed experiments
on the different devices. To do so, an Android program has been developed to
consult, for each measurement, the system clock of the smartphone accelerometer
and therefore to calculate a posteriori the delay between each measurement. On
average, the sampling rates recorded for the different devices are respectively
15 Hz for the Samsung A5 and A3, 20 Hz for the LG Optimus F6 and adaptative
sampling rate (maximum limit 50 Hz) for the Samsung S6.

Sampling Jitter. To estimate the sampling jitter we relied on the same exper-
iments that for the sampling rate. For each device, time evolution, distribu-
tion and autocorrelation of the centered sampling jitter is illustrated in Fig. 1.
The different devices behave differently regarding the sampling jitter. Galaxy A5,
Galaxy A3 and LG Optimus F6 present a sampling jitter which is very closed to
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Fig. 1. Each column is for a different device. First line: time evolution; second line:
distribution; third line: autocorrelation of the sampling jitter. Data were previously
centered.

a Dirac distribution, where Samsung S6 presents the largest dispersion around
the Dirac. The jitter of these three devices can be modeled by a white noise in
accordance with their autocorrelation. Surprisingly, the Samsung S6 which has
an adaptive sampling rate does not have the same shape of distribution for the
jitter: its distribution is more like a generalized Gaussian and its autocorrelation
indicates a deterministic and cyclic jitter which may come from a timer in the
adaptation process.

3 Ground Truth from Vision-Based System

Subjects. Four healthy volunteers without any known gait pathology partic-
ipated in the walking experiments. During the tests, they were asked to walk
on a treadmill for 2 min: the first minute at 1.2 km/h and the second minute at
2.4 km/h. Then the subject realized exactly the same session with a knee splint.

Reference System. Validation of the accelerometer signals and extracted fea-
tures was performed against a high frame rate video camera (Gige Vision). The
motion tracking is based on markers that were placed on the different segments
of the leg (respectively hip, thigh, ankle and foot) as illustrated on Fig. 2. On
these same segments, the four different devices presented in Sect. 2 have been
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Fig. 2. Left: a frame of the video camera with in different colors the trajectories of
the segments as estimated from the entire video sequence. Middle: vertical acceleration
signals derived from the video sequence (double derivation from the positions). Right:
vertical acceleration signals from the smartphones. Note that only the three first gait
cycles of the 2 min test are displayed.

fastened (hip = Samsung A3; thigh = Samsung A5; ankle = LG Optimus; foot =
Samsung S6). The video camera was placed close to the treadmill such that the
pointing direction is approximately perpendicular to the sagittal plan to avoid
distorsions. During each gait test, we collected simultaneous video at 300 Hz and
acceleration signals in 3D at sampling rate indicated in Sect. 2 for hip, thigh,
ankle and foot. The motion tracking from the video sequence was performed
using an open-source tracking software [11]. Markers that were placed an the leg
segments were automatically detected using local features detector (Laplacian
of Gaussian): it requires to calibrate in size the frames of the video sequence and
give an estimate of the size of the markers to be searched.

4 Claudication Detection

A number of spatio-temporal parameters of gait have been proposed over the
years to detect claudication [1,2]: step length, step duration, stance phase, load
response, single support, pre-swing, and swing phase (%). In this work, we pro-
pose to resume these in one indicator: the duty cycle (DC) of the periodic walk-
ing function. As illustrated on Fig. 3, the acceleration signal has to be binarized:
from the vertical acceleration signal, the algorithm detects time intervals dur-
ing which accelerometer is at rest (0) and vice versa (1). More precisely, the
binarization was based on z-score: if a new acceleration is below a fixed signed
number of standard deviations (3 in our case) from the mean (estimated over
three gait cycles) then it is considered as at rest. DC is expressed as the ratio of
the duration of the swing phase (1) over the total duration of the step.
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Fig. 3. First row: normal walk. Second row: walk with knee splint. Middle column:
ground truth acceleration signals from the ankle segment. Right column: ground truth
acceleration signals from the foot segment. Averaged DC for the 2 min test is given for
each condition in the lower left angle of the graph. Note that only the three first gait
cycles are displayed.

Table 1. Averaged DC and standard deviation computed for the 2 min test regarding
the different sources of noise for the foot. For each line, the other sources of noise are
fixed: quantification, sampling rate and jitter studies are carried out with respectively
50 Hz and no jitter, 13 bits and no jitter and 13 bits and 50 Hz.

# Bits 13 12 11 10 9 8

Normal 0.338± 0.002 0.338± 0.002 0.338± 0.002 0.337± 0.003 0.328± 0.005 0.321± 0.011

With splint 0.523± 0.002 0.523± 0.002 0.523± 0.003 0.521± 0.003 0.510± 0.012 0.505± 0.023

Rate 50 40 30 20 10

Normal 0.338± 0.002 0.328± 0.005 0.327± 0.015 0.315± 0.022 0.303± 0.030

With splint 0.523± 0.002 0.519± 0.009 0.517± 0.025 0.506± 0.031 0.483± 0.039

Jitter S6 A5 A3 F6

Normal 0.3204± 0.021 0.3294± 0.004 0.3305± 0.003 0.3232± 0.023

With splint 0.5010± 0.033 0.5150± 0.064 0.5152± 0.071 0.5061± 0.037

In order to measure the impact of the three noise sources on DC, we simulated
degraded signals from the ground-truth accelerometer signals for observed ranges
in Sect. 2. In other words, ground truth signals were sampled by the appropriate
factor, quantified on the adequate number of bits and jittered by the four distri-
butions given in Fig. 1 to aim the observed ranges. The analysis of DC regarding
the different noise sources (see Table 1) has to be done in comparison with DC
observed in ground truth (see Fig. 3).
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5 Discussion and Conclusion

DC is able to distinguish normal free walk from constrained walk (miming clau-
dication with a knee splint) on ground truth data at the levels of ankle and foot:
the Welch’s t-test respectively reported a p-value of 1.18e−4 and 3.16e−05. DC
has not been applied to thigh and hip signals because it was not significative
to distinguish normal walk from claudication: these signals have smaller ampli-
tudes and hence flat and non-flat phases less marked. DC proved to be robust
when confronted with realistic quantification, sampling rate and jitter variability
observed on smartphones’s accelerometers: the Welch’s t-test reported a p-value
below 0.05 for all cases reported in Table 1. Noise tend to under evaluate the
swing phase whatever the source of noise leading to a smaller DC. The most
critical noise source appears to be the sampling rate and its impacts seems to
be greater with splint: if the sampling is too coarse, peaks of acceleration con-
stituting the non-flat phase can be missed.

We presented an original noise analysis of smartphone accelerometers from
devices of varying prices for a specific informational task: claudication detection.
Claudication was detected by estimating duty cycle from the vertical accelerom-
eter signal. Three noise sources were investigated: sampling jitter, sampling rate
and quantification. Validation of this study was based on ground-truth from
high frame rate video camera. Our results demonstrate for the first time that
smartphones’ sensors are sufficiently accurate to detect claudication. This pilot
study opens interesting perspectives: state-of-the-art methods for claudication
detection could be compared to determine which one is the most robust to the
typical noises identified in this study; and smartphones’ sensors could be tested
to detect other walking irregularities.
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