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Abstract. Many of preterm babies suffer from neural disorders caused
by birth complications. Hence, early prediction of neural disorders, in
preterm infants, is extremely crucial for neuroprotective intervention. In
this scope, the goal of this research was to propose an automatic way
to study preterm babies Electroencephalograms (EEG). EEG were pre-
processed and a time series of standard deviation was computed. These
series were thresholded to detect Inter Burst Intervals (IBI). Features
were extracted from bursts and IBI and were then classified as Abnor-
mal or Normal using a Multiple Linear Regression. The method was
successfully validated on a corpus of 100 infants with no early indication
of brain injury. It was also implemented with a user-friendly interface
using Java.
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1 Introduction

Recent studies reported that 1 million preterm infants, among 15 millions born
prematurely per year, were dead [1]. Unfortunately, many of the survived babies
suffered from lifetime disabilities like visual and auditory problems, learning
difficulties, etc. To avoid these disabilities, it is crucial to diagnose, prognose,
and treat preterm born babies as quickly and as accurately as possible [2,3].
Usually, preterm babies receive a special attention provided by neonatal intensive
care units. Intensive care units monitor babies brain activities through non-
invasive Electroencephalogram (EEG) recordings. In preterm infants, EEG is
physiologically constituted by an alternation of bursts of activity and periods
of suppression called Inter Burst Interval (IBI) (Fig. 1). The proportion and
duration of IBI vary according to the sleep stages (more prolonged in the calm
sleep) and according to the term of birth (more prolonged in premature babies).

In everyday clinical practice, the EEG analysis is still done visually which
leads to several difficulties. First, physicians accustomed to the analysis of EEG
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of very preterm infants are rare, causing delays in the interpretation of EEG
tracings. Besides, visual analysis are subjective. Furthermore, in small hospitals,
the expertise is often not available. Therefore, it is highly crucial to automate the
physician’s EEG analysis. Several researches tried to automatize bursts detection
and the occurrence of seizures of full-term babies. For instance, authors of [4],
proposed a method to discriminate between seizure and non-seizure EEG epochs
of full-term babies. However, EEG characteristics vary a lot between preterm
infants and full-term infants [5]. Few numbers of studies tackled the problem of
identifying abnormal EEG of preterm infants. In the scope of automatic EEG
analysis for prematurely newborns, we can quote the work presented in [3].
The authors proposed a method for automated burst detection based on line
length, which is a running sum of the absolute differences between all consecutive
samples within a predefined window [6].

Our motivation is to complete these studies by an automatic analysis of
preterm EEG so as to detect abnormal brain activities, like an expert would have
interpreted EEG. This allows to prioritize EEG that should be urgently analyzed
by neurologist. To the best of our knowledge, there was no research addressing
this task. Our method consisted on preprocessing data; EEG was filtered, using
a band-stop IIR filter and smoothed using a moving average window. After, IBI
were detected by thresholding standard deviation of preprocessed EEG. Relevant
features were extracted from IBI and bursts and were then classified using a
Multiple Linear Regression. Performance measures were evaluated using Areas
Under the ROC Curves (AUC, [7,8]). The proposed method was validated on a
cohort of 100 preterm babies, with no severe brain injuries.

The paper is outlined as follows: Sect. 2 describes the database that was
collected. Section 3 accounts for the method. Section 4 shows results. Finally a
conclusion is drawn.

2 Materials

EEG signals from 100 preterm babies were recorded in the neonatal intensive
care unit of neuropediatric department of the University Hospital of Angers in
France. This monitoring was part of the usual clinical follow up of premature
babies. All babies legal representative gave informed consent for participation in
research studies. EEG was recorded, with a sampling rate of 256 Hz, using the
Alliance (Nicolet Biomedical) recording system with reduced neonatal montages
of 8 to 11 adapted scalp electrodes according to the head size. Electrodes were
placed according to the international 10–20 system. No hardware filter was used
in the acquisition procedure, except the high-pass filter with 0.1 Hz as a cut-off
frequency classically used to remove the offset of the baseline.

A total of 416 EEG recordings of 30 to 45 min durations were performed
between January 1, 2003 and December 31 2004. All the 100 infants had less
than 35 weeks of gestation. Each infant had between 1 to 7 EEG recordings
resulting into the 416 EEG recordings. The 416 EEG were reviewed by a neuro-
pediatrician and classified as normal, abnormal and doubtful. This classification
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Fig. 1. An IBI example.

has been achieved through a careful visual analysis: EEG was considered as nor-
mal if the background activity (in relation to the gestation age) was normal and
no abnormal features on the EEG were seen. The abnormal EEG were those
who showed excessive discontinuity with maximal IBI duration above 50% of
the maximal value (in relation to the gestation age), seizures, positive rolandic
sharp waves of more than 2 per minute. 100 EEG recordings were considered as
doubtful and were rejected. Finally, for the 316 kept EEG, the visual eye inspec-
tion gave 274 normal (88.77%, 31.04 ± 2.13 weeks of gestation) and 42 abnormal
(11.23%, 30.01 ± 2.19 weeks of gestation) EEG. An example of abnormal EEG is
illustrated in Fig. 1.

3 Methods

3.1 Problem Statement

Let s(t) denote the EEG signal of N samples recorded in a given electrode.
This signal essentially contains background activity where abnormal activities
(IBI with discontinuity, seizures, rolandic sharp waves, etc.) may appear. The
problem, addressed in this paper, consists of detecting the IBI and then clas-
sifying EEG into normal or abnormal. Automatic detection of abnormal EEG
was done in four steps: preprocessing, IBI detection, feature extraction and EEG
classification. In this section, each of these steps was detailed.

3.2 Preprocessing

For each electrode, raw EEG signal s(t) was band-stop filtered at 50 Hz with
a notch second order Butterworth IIR filter, so as to obtain a filtered signal
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sBP (t) where the 50 Hz power supply frequency was removed. Then, sBP (t) was
smoothed by computing the moving average over a window of width ω1:

sMA[n] =
1
ω1

n+ω1/2∑

k=n−ω1/2

sBP [k], n = 1, . . . , N (1)

3.3 IBI Detection

To detect IBI, standard deviation of signal sMA(t) was computed and thresh-
olded like in [9]. Indeed, standard deviation was computed on sliding windows
of size ω2 with an overlap of ω3 samples (ω3 < ω2) as following:

ν2[n] =
1

ω2 − 1

nω3+ω2−1∑

k=nω3

s2MA[k] − 1

ω2(ω2 − 1)
(

nω3+ω2−1∑

k=nω3

sMA[k])2, n = 1, . . . , N (2)

Successive standard deviation series with values below a threshold VT (in μV )
and longer than 1 s in duration were detected and delineated by an onset and
an offset boundary limit markers. Consecutive detections less than 0.5 s apart
were grouped together and considered as the same IBI. Finally, only IBI present
across all EEG electrodes and longer than 1 s were kept.

3.4 Feature Extraction

For each EEG electrode, a vector of 13 features was extracted as following:

1. Number of IBI: nb IBI,
2. Total duration of IBI, defined as the sum of all IBI durations: tot IBI (sec-

onds),
3. Percentage of IBI in the EEG: P IBI(%) = tot IBI

EEG duration ,
4. Duration of the longest IBI: Max IBI (seconds),
5. The maximum of IBI percentage in the EEG, P Max IBI(%) =

Max IBI
EEG duration ,

6. The mean duration of IBI, defined as the sum of the IBI durations divided
by the number of IBI: Mean IBI (seconds),

7. Number of bursts: nb B,
8. Total duration of the bursts calculated as the sum of all bursts durations,

tot B (seconds),
9. Percentage of bursts in the EEG, P B(%) = tot B

EEG duration ,
10. The duration of the longest burst: Max B (seconds),
11. The maximum of bursts percentage in the EEG: P Max B(%) =

Max B
EEGduration ,

12. The mean duration of the bursts calculated as the sum of the bursts dura-
tions divided by the number of bursts, Mean B (seconds),

13. The gestational age of the newborn at the time of the EEG examination:
Age EEG in weeks.
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3.5 Multiple Linear Regression

Extracted features formed a set of vectors xm ∈ R
d,m = 1, . . . ,M with M the

total number of EEG electrodes and d = 13 the number of extracted features.
The entire data set was written as {(x1, y1), . . . , (xm, ym), . . . , (xM , yM )} with
class labels ym ∈ {+1,−1} for Abnormal and Normal EEG respectively. Learning
a Multiple Regression classifier consisted on finding a function f :

f : Rd −→ R

x �−→ f(x) =
d∑

i=1

wixi + b (3)

with w ∈ R
d is the slope and b ∈ R is the intercept of the function f . The

predicted class is then given by the sign of f . Hence, we have to compute

α =
[

w
b

]
∈ R

d+1 minimizing the quadratic error:

min
α∈Rd+1

‖ε‖2 = min
α∈Rd+1

‖y − Xα‖2 (4)

with y =

⎡

⎢⎢⎢⎢⎢⎢⎣

y1
...

ym

...
yM

⎤

⎥⎥⎥⎥⎥⎥⎦
and X =

⎡

⎢⎢⎢⎢⎢⎢⎣

x1,1 x1,2 . . . x1,d 1
...

...
...

...
xm,1 xm,2 . . . xm,d 1

...
...

...
...

xM,1 xM,2 . . . xM,d 1

⎤

⎥⎥⎥⎥⎥⎥⎦
. The solution was given by

α̂ =
(
XTX

)−1
XT y.

4 Results and Discussion

Experiments on EEG data set, described in Sect. 2, were conducted to evaluate
performance of the proposed method. Performance were quantitatively analyzed
using the Receiver Operating Characteristic (ROC) curves [7]. The ROC curve
is a parametric plot representing sensitivity as a function of specificity for dif-
ferent thresholds. Area Under the ROC curve, AUC, was computed for a handy
representation of results [7]. The whole data set was resampled, using a 5-cross
validation, into training and testing sets on a per class basis.

Mean comparison statistical tests of Abnormal versus Normal features
revealed that these distributions have different means with p-values under 0.01.
Experimental results showed that Multiple Linear Regression estimated on tem-
poral features can detect accurately abnormal EEG. The optimal threshold VT

was of 23µV. Detection of an abnormal preterm infant EEG reached a sen-
sitivity of 85.83%± 15.97 and a specificity of 74.14% ± 15.97 with an AUC of
80.00% ± 0.08. Thus, if the automatic detection considered that an EEG is abnor-
mal, it must be interpreted primarily by the doctor to undergo more medical
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examinations such as an MRI (Magnetic Resonance Imaging) scanner, an expen-
sive test that can not be done routinely. Moreover, due to the high sensitivity,
an EEG classified as normal does not need to be interpreted urgently by the
neurologist.

It is worthy to note that performance were achieved on a set of 416 EEG after
rejecting 100 doubtful EEG. It will be interesting to learn a classifier that auto-
matically labels these suspicious as doubtful. The correlation of our results with
the outcome at 2 years was not done because infants who were clinically diag-
nosed as pathological and treated had a chance of recovering. Finally, the pro-
posed method was implemented, using java, in a user-friendly interface designed
to inspect detection results and test different parameters, if needed.

5 Conclusion

This study presented a software for automatic detection of abnormal Electroen-
cephalograms (EEG) of preterm infants. The method consisted on detecting Inter
Burst Intervals, extracting features from EEG and classifying them into normal
or abnormal EEG. Experimental results illustrated the efficiency of the proposed
method in terms of sensitivity and specificity. These findings are very promising
and encourage further researches that may enhance detection of abnormal EEG.
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