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Abstract. Radio scenario recognition is critically important to acquire com-
prehensive situation awareness for cognitive radio networks in the millimeter-
wave bands, especially for dense small cell environment. In this paper, a generic
framework of machine learning-aided radio scenario recognition scheme is
proposed to acquire the environmental awareness. Particularly, an advanced
back propagation neural network-based AdaBoost classification algorithm is
developed to recognize various radio scenarios, in which different channel
conditions such as line-of-sight (LOS), non-line-of-sight (NLOS), and
obstructed line-of-sight (OLOS) are encountered by the desired signal or
co-channel interference. Moreover, the advanced AdaBoost algorithm takes the
offline training performance into account during the decision fusion. Simulation
results show that machine learning can be exploited to recognize the compli-
cated radio scenarios reliably and promptly.
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1 Introduction

In light of the emerging fifth generation (5G) mobile communication systems, massive
MIMO, ultra-dense networks (UDN) and millimeter-wave communications are among
the most promising technologies. To deal with the challenging interference manage-
ment issues of ultra-dense small cell networks operating in the millimeter-wave bands,
cognitive radio (CR) technologies can to be employed [1]. CR has been investigated
intensively as an effective approach to dynamically adapting to the changes of envi-
ronment and quality of service (QoS) of users. In cognitive radio networks, observa-
tion, reconfiguration and learning abilities are commonly expected [1]. Comprehensive
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situation awareness, especially, the radio scenario recognition, is the prerequisite to
acquiring or enhancing the learning ability of CR. A radio scenario can be character-
ized by a broad range of features in context of network topology, locations and con-
figurations of base stations (BS) and user equipment (UE), radio propagation condition,
spectrum usage, and source of interference, just to name a few. Moreover, in order to
meet with the varying QoS requirements of UEs in the dense small cell environment,
comprehensive situation awareness is required as the power of both desired signal and
co-channel interference could be dynamically changing. For future ultra-dense small
cell networks operating in the millimeter-wave bands, the ability of radio scenario
recognition and interference management becomes even more important in order to
identify the actual source of co-channel interference and the channel condition for the
desired signal as well as the co-channel interference. Only with accurate and prompt
radio scenario awareness, the QoS of users can be better ensured by making appropriate
adaptations or reconfigurations of radio parameters. Mobility support and QoS support
for millimeter-wave wireless networks are the major motivations for this work. How to
realize comprehensive radio scenario recognition for ultra-dense networks in the
millimeter-wave bands is the main issue investigated in this paper.

As we know, machine learning is an effective approach to voice or image recog-
nition. Some research on machine learning-based scenario recognition focuses on
robotics or image processing by employing probabilistic models, convolutional neural
networks or multi-layered neural networks [2—4]. For the radio environmental aware-
ness, radio scenario recognition may include various aspects such as spectrum occu-
pation, signal classification, and radio channel condition recognition [5-9]. For
example, a spectrum prediction algorithm based on artificial neural networks is pro-
posed in [5]; spectral coherence and artificial neural networks are further employed to
classify the modulation types of signals [6]. With regard to the channel condition, some
researchers analyze the statistical characteristics of the received signal [7], while some
researchers apply machine learning algorithms to none-LOS (NLOS) identification for
ultra-wide band (UWB) systems [8, 9]. For example, a NLOS identification algorithm
based on least square support vector machine (LSSVM) is presented in [8]. However,
in order to improve the positioning accuracy, most of the existing work on radio
channel condition recognition mainly considers the classification of line-of-sight
(LOS) and none-LOS (NLOS) for the desired signal only. Communications in the
millimeter-wave bands need to consider more environmental factors such as obstruc-
tion due to foliage. Scenarios with the obstructed LOS (OLOS), which are caused by
moving or fixed objects (e.g., pedestrians, trees), are usually ignored for communica-
tions in low-frequency bands (e.g., sub-6 GHz band). Moreover, in order to improve
the classification ability, boosting algorithms have been adopted to develop a strong
classifier by combining multiple “weak” classifiers or base classifiers [10]. The weak
classifier can be based on back propagation neural network (BP-NN) or support vector
machine (SVM). AdaBoost algorithm is a kind of boosting algorithms. The AdaBoost
algorithm enables high accuracy of classification with simple structure, which is
suitable for the nonlinear classification problems of radio scenario recognition. In
addition, radio environmental map (REM) which stores multi-dimensional radio sce-
nario parameters has been proposed for CRs [11]. REM can serve as the “navigator” for
the CRs by offering very comprehensive radio scenario information.
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This article proposes a generic machine learning-aided radio scenario recognition
scheme for dense small cell networks operating in the millimeter-wave bands. An
advanced back propagation neural network based AdaBoost (BP-AdaBoost) algorithm
is developed, which takes the offline training performance into account during the
decision fusion. To the best of our knowledge, it is the first attempt to employ the
AdaBoost algorithm for radio scenario recognition. Furthermore, three kinds of channel
conditions (namely, LOS, NLOS, and OLOS) are taken into account for both the
desired signal and the co-channel interference. Simulation results demonstrate the
effectiveness and the advantages of the proposed algorithm.

The rest of this paper is organized as follows. In Sect. 2, the framework of machine
learning-aided radio scenario recognition scheme is proposed. Main modules of radio
scenario recognition are discussed in details. In Sect. 3, the advanced BP-AdaBoost
algorithm is analyzed. In Sect. 4, the simulation results are presented to show the key
performances. Summary is given in the last section together with discussions on future
work.

2 Framework of Radio Scenario Recognition

Figure 1 shows the framework of the proposed radio scenario recognition scheme,
which mainly consists of the following four key modules.
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Fig. 1. Framework of the proposed radio scenario recognition scheme.

(i) Environmental data collection module: this module collects environmental
data from multiple sources such as BS, UE, geolocation database, various
environmental sensors, e.g., rain fall meter, Internet of things (IoT) sensors and
the REM [11, 14].

(ii) Feature extraction module: this module extracts the useful features such as the
path loss and its statistics, angle-of-arrival (AoA) of the desired signal and
interference. Furthermore, instantaneous amplitude, phase and frequency of the
signal can be employed for modulation classification or recognition.



52 J. Wang et al.

(iii) Information exchange module: this module exchanges the system information
among different entities such as BS, UE, and spectrum coordinator to make
informed decisions, e.g., to classify the source of co-channel interference (either
intra-cell interference or inter-cell interference).

(iv) Scenario recognition module: this module conducts the classification tasks
relevant to scenario recognition, such as channel condition recognition, signal
modulation recognition, spectral occupation recognition, and so on. The radio
scenario type (i.e., the scenario ID in Fig. 1) can be determined by retrieving a
look-up table, which maps the results of various recognition tasks such as
channel condition, signal modulation, and spectral occupation. Each recognized
scenario ID represents a unique radio scenario of interest.

This article takes the channel condition recognition as an example in the following
subsections. To obtain comprehensive channel condition recognition in the
millimeter-wave bands, not only LOS/NLOS but also OLOS are considered for both
the desired signal and the co-channel interference. Figure 2 shows four typical radio
scenarios with different channel conditions, just for illustration. Among these scenarios,
Fig. 2(a) and (b) illustrate two scenarios with intra-cell co-channel interference,
whereas Fig. 2(c) and (d) illustrate two scenarios with inter-cell co-channel interfer-
ence. Particularly, in Fig. 2(a), the desired signal for UE; has LOS path. However, the
desired signal for UE, is blocked by buildings and is in NLOS condition in Fig. 2(b).
In Fig. 2(c), UE; experiences the inter-cell co-channel interference with LOS path,
whereas it experiences the inter-cell interference with OLOS path in Fig. 2(d).

(c) S-NLOS and I-LOS for UE1

(d) S-NLOS and I-OLOS for UE1

Fig. 2. Various radio scenarios of channel condition in millimeter wave bands. Note: in this
figure, “S-LOS” represents the desired signal in LOS condition whereas “I-NLOS” represents the
co-channel interference in NLOS condition.
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2.1 Feature Extraction

To recognize the complicated radio scenario, the following parameters or features can
be used for information exchange and channel condition classification.

(1) Location of UEs and BSs;

(2) AOA of the desired signal or interference;

(3) Path loss of the desired signal or the statistics of the path loss (such as variance of
path loss);

(4) Root mean square delay spread;

(5) Probability distribution function of the received desired signal or interference.

As mentioned above, these features are mainly employed for information exchange
and channel condition recognition. Obviously, which features are extracted and
exploited can directly affect the ability and performance of radio scenario recognition.
When the current features cannot meet the performance requirements, it indicates more
features or deeper features from the raw data need to be extracted. For example,
higher-order statistics (e.g., variance of path loss) is one of the deeper features
employed in this paper. Similarly, the key idea of deep learning (e.g., convolutional
neural networks and deep belief networks) is to design a feature extractor which
transforms the raw data into a suitable internal representation [12]. The performance of
radio scenario recognition can be enhanced by exploiting the additional deeper features.

2.2 Information Exchange

Interference exchange module is a critically important module in the proposed radio
scenario recognition framework, especially for dense small cell networks. With
exchanged information from neighboring cells, the source of interference and the type
of co-channel interference can be determined effectively. The flow chart of information
exchange between network entities such as UE, serving BS and spectrum coordinator
(SC) is elaborated in Fig. 3. The key procedures are discussed as follows.

(1) UE transfers “information-1” to the serving BS (). Note: “information-1” in
Fig. 3 refers to the UE location information, received power, AOA, etc.

(2) According to the extracted features, the serving BS checks whether co-channel
interference exist or not (by evaluating the interference-to-noise ratio of UE). If
co-channel interference exists, the BS further checks whether the co-channel
interference is from the serving cell itself (@—Q).

(3) Ifitis determined that the co-channel interference is from the neighboring cell, the
serving SC will find out which BS is the source of co-channel inter-cell inter-
ference first, and then report to the serving BS (®-®)). Note: “information-2” in
Fig. 3 includes the information about the source of interference.

(4) Based on the collected data and the exchanged information, the serving BS rec-
ognizes the type of interference (®).

With the help of the information exchange module, the various channel conditions
of the desired signal as well as the various types of co-channel interference are taken
into account in the scenario recognition module.
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Fig. 3. Information exchange for co-channel interference recognition. Note: “information-1”
refers to the UE location information, received power, AOA, etc.; “information-2” refers to the
source of interference.

3 Advanced BP-AdaBoost Algorithm

In this section, the proposed advanced BP-AdaBoost algorithm for the radio scenario
recognition module is discussed in two subsections. In the first subsection, the tradi-
tional BP-AdaBoost algorithm is discussed, which is a matured approach to simple
classification problems with two different classes. The most convenient way is to apply
the AdaBoost algorithm to multi-class problems directly. In the second subsection, the
proposed advanced BP-AdaBoost algorithm can be used to address more complicated
classification problems with multiple classes through decision fusion. Channel condi-
tion (e.g., LOS, NLOS, and OLOS) classification is an example application of the radio
scenario recognition.

3.1 BP-AdaBoost Algorithm

Back propagation neural network (BP-NN) is well-known for its pattern recognition or
classification capability. In this paper, BP-NN is employed as the “weak classifier” or
“sub-classifier” of the AdaBoost algorithm. The BP-AdaBoost algorithm employs a
number of BP neural networks in a cascade structure.

The BP-AdaBoost algorithm is carried out according to the following steps, as
shown in Fig. 4.
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Fig. 4. Block diagram of the BP-AdaBoost algorithm

Input the training sets: (x;,y;), i = 1,2,...,K; x can be a matrix populated with
the selected features; y; = 1 or —1, where “1” and “—1” represent the two types of
scenarios to be recognized, respectively.

Initialize the weights of all training sets, and set j = 1.

D;(i) % (1)

Use the training subset (x;, y;) for training the j-th BP-NN and then get the output
gj(0) of the BP-NN sub-classifier in the training step.
Calculate the error (¢) of the j-th BP-NN as defined by (2).

T S @)

i=1

Calculate the weight («;) of the j-th BP-NN as expressed by (3).

a,.:%m(lgﬁ). (3)

Update the weights of training samples by (4) and (5).

Dj 4 1(i) = D;(i) exp(—2;g;y;)- 4)
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Dj+1(i) .

B;

Djy1(i) =

(5)

where B is a normalization factor to ensure that the sum of the weights is equal to
1. B; is defined by (6).

K
Bi=Y Dj:i(i). (6)
i=1

13

(7) Increase jby 1,i.e.,j=j+ 1.If j > L (where L is the total number of BP neural
networks employed by the BP-AdaBoost algorithm), get the final strong classifier
Y(x) as defined by (7). Otherwise, repeat Step-3.

Y(x) = sign [Z ocjgj] . (7)
=1

Note that, as indicated by (7) in the last step of the BP-AdaBoost algorithm, the
output of the strong classifier only has two types of output, i.e., either 1 or —1. The
BP-AdaBoost algorithm used in the article can be replaced by any other classifiers
which can distinguish two classes (e.g., Bayes classifier, LSSVM, etc.).

3.2 Advanced BP-AdaBoost Algorithm

Figure 5 shows the block diagram of the proposed advanced BP-AdaBoost classifi-
cation algorithm, which employs a number of BP-AdaBoost sub-classifiers in parallel.
To make more reliable radio scenario recognition, both the offline training performance
for each scenario and the online classification results from each sub-classifier are taken
into account during the decision fusion.

Supposing there are M (M > 3) different types of radio scenarios to be recognized,
N sub-classifiers need to be employed and N is defined by (8).

N=Ci,. (8)

where C3 is the total combinatorial number for taking any two types of scenarios out of
M different scenarios.

Accordingly, N input data sets are collected and each input data set consists of the
training or testing data corresponding to two different types of scenarios, as shown in
the top box of Fig. 5. Note that each input data set may include a number of features.
The detailed procedure of the advanced BP-AdaBoost algorithm is discussed as
follows.

(1) The first step is to initialize the input data sets. The data sets include training sets
and testing sets tagged by M different types of scenarios. For instance, “data set-i”
consists of training data and testing data sets corresponding to “scenario-i”.
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Fig. 5. Block diagram of the advanced BP-AdaBoost classification algorithm

The second step is to train and test the BP-AdaBoost neural networks. The input
set-j corresponds to the input of j-th BP-AdaBoost sub-classifiers, which can
identify two different types of scenarios.

The third step is to calculate the vote of N BP-AdaBoost classifiers for each
scenario and the weight for each scenario. For instance, the vote (v;) represents the
total number of votes for the i-th scenario by N sub-classifiers; The weight (w;)
represents the average correct recognition rate for the i-th scenario in the training
stage. In the testing stage, j-th sub-classifier outputs the recognized “scenario ID”,
say, i. In some sense, the weight (w;) shows the offline training performance for
the i-th scenario, as defined by (9).

N
;R(i,j)

W= ©)

where, R(i, j) is the correct recognition rate corresponding to the i-th scenario for
the j-th BP-AdaBoost sub-classifier.

The fourth step is to make decision fusion for each scenario through a weighted
voting. The product of weight (w;) and vote (v;) for each scenario is calculated and
then find out the scenario ID (i) which corresponds to the maximal product, as
expressed by (10).



58 J. Wang et al.
max w;y; i=1,2,... M. (10)

(5) The final step is to output the recognized scenario ID (7).

The channel condition recognition module is an example application of the
advanced BP-AdaBoost algorithm. In this example, to recognize the LOS, NLOS, or
OLOS scenario, the total number of channel conditions to be recognized is 3.

4 Simulation Results

Simulations are conducted to evaluate the performance of the proposed advanced
BP-AdaBoost algorithm. The simulation results demonstrate the effectiveness of the
advanced BP-AdaBoost algorithm. Taking the channel condition recognition as an
example, the simulated scenarios include LOS, NLOS and OLOS. The system settings
and key parameters assumed in the simulations are listed in Table 1.

Table 1. System parameters used in the simulation

Parameters Value
Operating frequency 28 GHz
Number of hidden layer 1

Number of hidden layer nodes 6

Number of iterations in BP neural network 5
Learning rate of BP neural network 0.1
Learning goal of BP neural network (i.e., recognition error rate) | 0.0004
Number of BP neural networks in AdaBoost (L) 10
Number of scenarios to be recognized (M) 3

Number of training sets or samples (K) 10000
Number of testing sets or samples 1000

Path loss exponent of OLOS/NLOS/LOS (x) 2.5/3.4/2.1
Shadow factor of OLOS/NLOS/LOS (¢ in dB) 5.5/9.7/3.6

Moreover, the simulation is carried out by using the following millimeter-wave
path loss model [13], as defined by (11).

4
PLIdB](d) = 20 x log,, (ano) +10xlog;, (di) +X,. (11)
v 0

where d, is the given reference free space distance (dy = 1 m); 4 is the wavelength of
the carrier frequency (28 GHz); d is the distance between the transmitter and the
receiver in meters (d > dy); X, is a random variable following the zero mean Gaussian
distribution of N(0, ¢°); o is the path loss exponent and ¢ is the shadow factor.
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Figure 6 shows the performance comparison of the advanced BP-AdaBoost algo-
rithm when using single feature vs. two features. Note that in Fig. 6, “Single feature”
represents the “path loss” only whereas “Two features” refers to “path loss” and
“variance of path loss”. Figure 6 shows the correct recognition rate trained by two
features is higher than that when trained by single feature, especially for the OLOS
recognition. In addition, for all three types of channel conditions, the correct recog-
nition rates are over 99% when using two features. The simulation results indicate that
an internal representation of raw features (e.g., the variance of path loss) can improve
the performance of classifier significantly and reveal the potential benefits of exploiting
the deeper features.

T
- Signle feature
- Two features [

Correct recognition rate (%)

LOS NLOS oLoS
Channel conditions

Fig. 6. Performance of the advanced BP-AdaBoost in terms of correct recognition rate

Furthermore, we compare the performance of the advanced BP-AdBoost algorithm
with the traditional LSSVM algorithm in terms of correct recognition rate and operation
time, as shown in Table 2 and Fig. 7. The correct recognition rate for LOS and NLOS
are obtained with the same training and testing sets. The algorithm with two features

has good ability to identify different types of channel conditions, which is shown in
Table 2.

Table 2. Comparison of correct recognition rate

Methods Correct recognition rate
LOS NLOS
Two Single Two Single
features feature features feature
Advanced BP-AdaBoost 99.9% 88.3% 100% 60.9%
algorithm
LSSVM [8] 99.8% 74.4% 100% 60.3%
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Figure 7 shows the comparison of operation time (i.e., the computer running time)
with different number of training samples (K = 6000 and 7000, respectively). Note that
the simulation is conducted with a laptop computer (CPU: intel core i7 quard core,
2 GHz clock rate, and 4 GB RAM). With the increase of training samples, the oper-
ation time of the proposed Advanced BP-AdaBoost algorithm increases slightly
whereas the LSSVM classifier requires much longer operation time. This simulation
result shows that the proposed algorithm can ensure the effectiveness of scenario
recognition and has faster training speed than the LSSVM algorithm. This simulation
result also indicates the computational complexity of the proposed algorithm is much
lower than the LSSVM.

35

I Proposed algorithm

30 B ssvm

N N
o a
T

Operation time (s)
o

10F

6000 7000
Number of training samples

Fig. 7. Operation time comparison between the advanced BP-AdaBoost and LSSVM.

In sum, the simulation results demonstrate that the radio scenario recognition based
on our proposed advanced BP-AdaBoost algorithm has significant performance
advantages in terms of correct recognition rate and computational complexity. The
advantages of the proposed scheme will become even more pronounced when dealing
with more complicated scenarios such as scenarios with multiple interferers. Specifi-
cally, with the help of comprehensive environmental data obtained from multiple
sources, it is highly possible to recognize the channel condition of each interferer
separately by taking advantage of the narrow beamwidth of millimeter-wave antennas.

S Summary

To obtain comprehensive and prompt radio scenario cognition for cognitive dense
small cell networks operating in the millimeter-wave bands, a generic framework of
machine learning-aided radio scenario recognition scheme is proposed in this paper.
Particularly, taking the channel condition recognition as an example application, an
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advanced BP-AdaBoost algorithm is developed to identify the LOS, NLOS or OLOS
channel conditions for both the desired signal and the various types of co-channel
interference. Decision fusion is employed in the advanced BP-Adaboost algorithm,
which takes the offline training performance into account. The correct recognition rate
and operation time of the advanced BP-AdaBoost algorithm are evaluated and com-
pared against the traditional LSSVM algorithm through simulations, which demon-
strates the significant advantages of the proposed algorithm. Simulation results also
indicate additional features or deeper features can help to improve the performance of
the radio scenario recognition.

The scenario classifier simulated in this paper takes a simplistic view of the types of
“scenarios”, seeking predominantly to classify the signal path of interest and a single
interference path as LOS, NLOS, or OLOS. For future work, we may consider more
complicated scenarios with multiple interferers. The complexity of the proposed
advanced BP-AdaBoost algorithm can be further analyzed and optimized. In addition,
the operation time of the advanced BP-AdaBoost classifier might be further reduced by
adopting parallel programming with multi-core CPU or graphics processing unit
(GPU). Moreover, the internal functions of the AdaBoost algorithm can be further
studied to export multiple classes directly. Last but not least, thorough performance
evaluation with real-world measurement data is another important task of future work.
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