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Abstract. We present a new approach for mobility load balancing (MLB) and
user association in dense small cell scenarios. This Self Organizing Network
(SON) approach relies on Knapsack Optimisation (KO) to evenly distribute
users across participating cells subject to constraints. It is shown that the new
technique referred to as (MLB-KO) achieves substantial improvements (better
than three times reduction) in blocking ratios for the studied use cases.
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1 Introduction

The ever increasing demands for advanced and bandwidth hungry broadband services
as well as enhanced Quality of Experience (QoE) for the end users together with
spectrum efficiency and reduced energy consumption, have resulted in several chal-
lenges in designing and planning next generation “5G” wireless networks [1, 2]. The
use of network densification through the deployment of low power small cells, whether
by a mobile network operator or an end user, is recognised as one of the key strategies
towards achieving the 5G vision and targets. By densely deploying additional small cell
[3-5] nodes within the local area range and bringing the network closer to end users,
the performance and capacity are significantly improved. This in turn allows future
systems to achieve higher aggregate data rates at lower energy levels, while retaining
seamless connectivity and mobility resulting in improved QoE and user satisfaction of
the services being delivered by the network.

SESAME (Small cElIS coordination for Multi-tenancy and Edge services) [6] is a
project that targets innovations around three central elements in 5G: (i) the placement
of network intelligence and applications in the network edge through Network Func-
tions Virtualisation (NFV) and Edge Cloud Computing; (ii) the substantial evolution of
the Small Cell concept, already mainstream in 4G but expected to deliver its full
potential in the challenging high density 5G scenarios; and (iii) the consolidation of
multi-tenancy in communications infrastructures, allowing several operators/service
providers to engage in new sharing models of both access capacity and edge computing
capabilities resulting in a Small Cell as a Service (SCaaS) concept. Typical examples of
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use cases include deployment of small cell nodes to serve a busy large business or
shopping centre, service provision to a sudden concentration of users in hotspots such
as in a stadium, a conference centre, an exhibition or a carnival venue with users
generating high data rate real time multimedia content.

With the dense and dynamic deployment of a large number of small cell nodes in a
network, there is an essential need to adopt Self Organizing Networks (SON) tech-
nologies and advanced radio resource management capabilities [7-9] to facilitate
network management and to reduce or ultimately remove the need for human inter-
vention in the planning, deployment, optimisation and maintenance of the network
infrastructure. Adoption of SON techniques also known as Self-X (self-planning,
self-optimization and self-healing) result in rapid and efficient deployment of network
nodes and considerable reduction in capital (CAPEX) and operational (OPEX) costs.

SESAME proposes the Cloud-Enabled Small Cell (CESC) concept, a new
multi-operator enabled Small Cell that integrates a virtualised execution platform (the
Light DC (Data Center)) for deploying Virtual Network Functions (NVFs), supporting
powerful Self-X management and executing novel applications and services within the
access network infrastructure.

One of the main self-optimisation strategies in a SON is Mobility Load Balancing
(MLB) [10, 11]. MLB addresses the problem of uneven traffic distribution in mobile
networks. The main target of MLB and traffic steering algorithms is to enable over-
loaded cells to re-direct a percentage of their load to neighbouring less loaded cells
hence alleviating congestion problems. The expected gains from MLB algorithms are
highest when participating cells exhibit different usage patterns with respect to time. The
resulting increased network efficiency using MLB, postpones the deployment of addi-
tional network capacity hence reducing capital costs (CAPEX). This is traditionally
done through Cell Range Expansion (CRE), achieved by either cell coverage and/or
mobility parameter adjustments. The CRE based distributed approach may lead to
network performance degradation due to the frequency reuse of one adopted in LTE
based networks. Re-allocating a user to a base station other than the one offering the
highest signal level, as CRE sometimes does, may result in increased interference levels.
Suitable self-organizing MLB strategies should automatically react to varying traffic and
dynamic mobility patterns and should also take into account multiple tenancy as
neighbouring cells can generally belong to any tenant or operator. In multi-tenant Radio
Access Network (RAN) deployments, where shared resources are allocated based on
static or dynamic Service Level Agreements (SLA), the formulation of the “user-
association” problem needs to take full account of multiple (and possibly conflicting)
service types and requirements, as additional/new sets of constraints need to be met.

We present in this paper, a new Knapsack Optimisation (KO) approach to MLB and
the user association problem for dense small cell deployments. The generality of this KO
based centralised approach makes it suitable to answer the several constraints that need
to be met in a cluster of small cells densely deployed network wide and also suitable for
implementation in a Light DC as proposed by SESAME. The paper is organized as
follows: Sect. 1 sets the scene and highlights the need for new optimized MLB tech-
niques specifically targeting small cells. Section 2 presents the mathematical framework
of the used MLB-KO approach. Section 3 presents examples of simulation use cases
highlighting the effectiveness of the approach. Finally, Sect. 4 concludes the paper.
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2 Knapsack Optimisation for MLB in Small Cells

2.1 Background

The main modelling approaches for the user association problem are based on a
“utility” cost function maximisation that quantifies the satisfaction that a certain metric
is met. Examples of such approaches include game theory, stochastic geometry and
combinatorial optimisation.

Combinatorial optimisation has the advantage of being a generalised approach for
the utility maximisation problem. Several techniques relying on combinatorial opti-
misation were previously investigated and reported e.g. [12-21] all tackling the user
association problem from different perspectives and with different targets.

Knapsack Optimisation KO [22] is a combinatorial optimisation technique that, to our
knowledge has not been reported previously for the target application of this paper (MLB
for dense small cell deployments). KO is a natural solution to the problem of associating a
number of end users to a number of small cells with the aim of achieving efficient MLB
throughout the network under specific constraints as will be described below.

The knapsack problem can be described as follows: Given a knapsack with a fixed
capacity and a set of items, each item is associated with an individual profit and a weight.
The problem is to select a subset of items such that the total profit of the selected items is
maximised without exceeding the capacity. A more generalised form is the Multiple
Knapsack Problem (MKP) where a set of knapsacks are considered rather than one.

2.2 System Model

Given N end users and M small cell base stations, then the generalised MKP can be
formulated as follows:

Assign each user i with a weight w; to exactly one small cell base station j such that
the total capacity or throughput (i.e. the total profit in the context of MKP) of the
network C is maximised and without assigning user weights greater than the individual
capacity ¢; of any individual small cell base station j.

For LTE networks, the weight of user i if assigned to base station j: w;; is defined as
the required Physical Resource Blocks (PRB) by the user to achieve a certain target
individual Quality of Service (QoS) while the profit p; is the achieved individual
throughput which is a function of the Signal to Interference plus Noise Ratio (SINR) of
user i when connected to base station j. This can be formulated as follows:

m n
max C = 323 pyy
j=li=1

n
subjectto Y wyx; < ¢, j € M = {1,..., m}
l;l (1)
Z)C,j:], i €N = {1,..., n}
=

1 if useriis assigned to small cell base station j;
0 otherwise

with Xij = {
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The SINR of user i associated with small cell base station j can be written as:

2
SINR; — Pj|Hy| )

m
S PlHal* + o?
k=T kA

where P is the transmission power of the base station, H is the channel transfer function
between the user and the base station and includes the effects of path loss, shadowing,
antenna patterns and other losses and o is the thermal noise power at the user’s
receiver.

An additional constraint is added to the optimisation problem to ensure that the
individual user’s SINR is above a certain minimum threshold value to reject users
suffering from excessively bad radio channel conditions and/or interference from
unnecessarily overloading the target small cell base station.

SINRU Z SINRthreshold (3)

When N and M increase, the MKP problem becomes NP-hard [22]. A possible
approach to solve the above optimisation problem is to use the Greedy algorithm. This
is implemented by sorting all the users in a decreasing order of their profit to weight
ratios before associating them to individual small cells. Examples highlighting the
effectiveness of the KO approach for MLLB in dense small cells are presented in the
following section.

3 Simulation Results and Discussion

We first consider a relatively simple case of a two small cell LTE network. Users are
randomly located around the centre of each cell with a uniform distribution. The load
(weight) of each user is obtained through a uniformly distributed random variable with
an average value of 5 PRB. Users’ speeds are randomly generated using a uniform
distribution with an average speed of 30 km/h. Log normal shadowing with a mean
value of 4 dB is considered. The first cell is intentionally made to be heavily over-
loaded (>cell maximum capacity) while the second cell has a spare capacity. An
illustration of the simulation scenario is shown in Fig. 1 and a summary of the main
simulation parameters is shown in Table 1.

The metric used to assess the effectiveness of Mobility Load Balancing using
Knapsack Optimisation (MLB-KO) is the Blocking Ratio (BR). BR is defined as the
number of blocked (unserved) users U,, divided by the total number of users U, in the
network.

BR — % x 100% (4)

t

Figure 2(a) shows the load of the two cells before implementing the KO approach.
Cell 1 is overloaded and exceeds the maximum allowed capacity. The MLB-KO
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Table 1. Main simulation parameters for the two cell scenario

Parameter Value
Number of cells 2
Cell radius 20 and 10 m

Number and location of users
Cell maximum capacity
User load

User speed

Carrier frequency

Bandwidth

Small cell transmit power

Noise power spectral density (PSD)
Path loss (in dB)

Log normal shadowing mean value

35 and 10 users uniformly distributed
100

Variable with uniform distribution
Average = 5 PRB

Variable with uniform distribution
Average = 20 km/h

2 GHz

20 MHz

23 dBm

—174 dBm/Hz

140.1 + 36.7 Log10 (distance in km)
4 dB
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Fig. 1. Network topology example with two cells and 45 users
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technique redistribute the users across the two cells subject to the above constraints
to balance the loads resulting in a more even distribution as shown in Fig. 2(b). The
technique is tested taking into account the effect of the variation of path loss and subse-
quently the individual SINR value of each user due to shadowing and random user speeds.
The blocking ratio is calculated for every simulation time sample. It is concluded that
the average blocking ratio drops from 26.06% to 5.89% with MLB-KO resulting in more
than four times improvement for the studied network topology as shown in Fig. 2(c).
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Fig. 2. Comparison of the blocking ratio before and after MLB-KO for the two cell scenario
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Table 2. Main simulation parameters for the seven cell scenario

Parameter

Value

Number of cells

7 (randomly located)

Cell radius

Variable 10 to 20 m

Number and location of users
Cell maximum capacity

Variable 5 to 35 users per cell uniformly distributed
100

User load Variable with uniform distribution
Average = 5 PRB

User speed Variable with uniform distribution
Average = 30 km/h

Carrier frequency 2 GHz

Bandwidth 20 MHz

Small cell transmit power 23 dBm

Noise power spectral density (PSD) | —174 dBm/Hz

Path loss (in dB) 140.1 + 36.7 Log10 (distance in km)

Log normal shadowing mean value |4 dB
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Fig. 3. Network topology example with seven cells and 120 users



344 K. M. Nasr et al.

200

180

160

Cell
Maximum
Capcity

/

2 3 4 5
Cell Number

140

120

100

80

Load utilization in percent

60

40

20

(a) No MLB

1 2 3 5 6 7

(b) After MLB-KO

100

©
S

=)
3

L

~
=)

L

=
3

L

@
3

L

IS
S

L

@
S

L

Load utilization in percent

N
S

L

=)

L

0
4

Cell Number

24

22

=== MLB-KO

20 I I
==== NoMLB

Blocking Ratio
=

N AN/ ~

v N N

2 4 6 8 10 12 14 16 18 20
Time Sample

(c) Blocking Ratio

Fig. 4. Comparison of the blocking ratio before and after MLB-KO for the seven cell scenario
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A more challenging use case is now considered with a seven small cell scenario and
120 users unevenly distributed as illustrated in Fig. 3. A summary of main simulation
parameters is presented in Table 2.

Figure 4 shows the load distribution for each of the seven cells (a) before and after
MLB-KO (b). Figure 4(c) shows the variation in BR resulting from path loss dynamics
due to shadowing and users’ speed with sampling time. It is concluded that the
MLB-KO technique achieves approximately 3.5 times improvement in blocking ratio
compared to the case where no MLB scheme is implemented for the studied seven cell
scenario.

4 Conclusions

A new approach for user association and MLB in dense small cells based on Knapsack
Optimisation was presented. Example simulation scenarios targeting dense small cells
deployments show that the MLB-KO technique is capable of achieving three to four
times improvement in blocking ratios compared with the case where no MLB strategy
is deployed in a network or a cluster of small cells. The generality of the technique
makes it suitable to support multi-tenancy and the vision for Small Cells as a Service
(SCaaS) as advocated by the SESAME project. The future work aims at comparing the
performance of MLB-KO with enhanced Inter Cell Interference Cancellation (eICIC)
techniques relying on Cell Range Expansion (CRE) and Almost Blank Subframes
(ABS) and investigating signaling overheads.
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