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Abstract. Diverse wireless standards, designed for diverse traffic types, operate
in the same wireless environment without coordination, often leading to inter-
ference and inefficient spectrum usage. Although C-RAN (Cloud/centralized
RAN) is a promising architecture to achieve intra-operator network coordina-
tion, the architecture encounters challenge when low latency services and
diverse access technologies are expected over non-fiber fronthaul. So,
multi-standard multi-channel access point with low processing latency is pre-
ferred to be at the edge of network instead of central cloud. But, developing this
kind of equipment is difficult as multiple radio chips and drivers have to be
integrated and coordinated. In ORCA (Orchestration and Reconfiguration
Control Architecture) project, a SDR architecture is developed on a single chip
radio platform including hardware accelerators wrapped by unified software
APIs, which offer the following capabilities: (1) concurrent data transmission
over multiple virtual radios; (2) runtime composition and parametric control of
radios; and (3) radio resource slicing, supporting independent operation of
multiple standards in different bands, time slots or beams. Such an architecture
offers a fast development cycle, as only software programming is required for
creating and manipulating multiple radios. The architecture further achieves an
efficient utilization of hardware resources, as accelerators can be shared by
multiple virtual radios.

Keywords: Coexistence � SDR � Resource slicing � FPGA � C-RAN
Virtualization � CPRI

1 Introduction

Our world is increasingly defined by software. Even sectors that used to rely mainly on
hardware are evolving rapidly. From use cases like self-driving cars to the inspection of
factory plants, digital assets make the difference.

Software Defined Radio (SDR) [1] is a typical case of “softwarized” hardware:
transceiver components (such as mixers, demodulators or decoders) that are typically
implemented on hardware are now possible to be implemented by means of software.
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C-RAN (Cloud/centralized Radio Access Network) [2] is a typical application of
SDR in wireless industry. In C-RAN architecture, RRH (Remote Radio Head,
including antennas) is connected to software BBU (Base Band Unit) in cloud center via
digitalized IQ sample fiber link (CRPI or OBSAI) [3]. Each RRH covers a sector or a
cell. Because all cells’ BBUs are resident in the same cloud center, it brings benefits [4]
to operator, such as allocating processing and frequency resources to different cell
dynamically according to traffic variation (day VS night; street VS stadium; etc.);
coordinate interference among different cells in a more efficient way; multi-cell
cooperated transmitting and receiving for UE (User Equipment) and etc. A drawback of
C-RAN for operator is that high quality fronthaul is needed to connect RRH at antenna
side and BBU in the cloud. The link needs to be low latency and low jitter [5]. When
there isn’t fiber available, fronthaul will be challenging.

Advanced technologies in computer science, such as virtualization [4], can be
easily applied to C-RAN, since all layers of RAN protocol, including L1 – physical
layer, are implemented in software running in cloud center. By virtualization, it is no
longer necessary to map each BBU software instance to one physical server. Multi-
ple BBU instances can share the same physical server, or multiple physical servers can
serve as a super computer to run an ultra-high bandwidth BBU. BBU instance can be
created, destroyed or migrated according to dynamic requirement.

In parallel with operators’ RAN, there are many other types of wireless
networks/standard, such as Wi-Fi [6] for internet or intranet access, 802.15.4/Zigbee [7]
and 802.11ah [8] for short-to-middle range IoT (Internet of Things) applications, as well
as LoRa [9] and SigFox [10] for long range IoT, remain competitive. In addition, new
applications are emerging, serving as driving force of network technologies, which
include robot or UAV (Unmanned Aerial Vehicle) control, vehicle-to-vehicle commu-
nication for autopilot, Virtual Reality (VR) and real-time gaming. So, new standards or
new features are needed over existing standards to interact with diverse physical world.

Furthermore, spectrum sharing is a common issue for many technologies men-
tioned above, especially for those operating in the ISM (Industrial, Scientific and
Medical) bands. In practice, the coordination among these technologies is either very
hard to achieve or not present at all. Unlike the case of C-RAN, an operator can run
multiple standards and base stations at one location – cloud center, the application here
run in different physical access-point/gateways, which are owned by different enter-
prises or even private home. This situation may lead to inefficient usage of spectrum,
and severe QoS (Quality of Service) degradation for specific application due to
interference from heterogeneous technologies.

An equipment supporting parallel operation of multiple standards and multiple
channels is a promising approach to deliver services with diverse QoS, in terms of
optimized wireless access and spectrum utilization efficiency. For low latency appli-
cation, hardware solution, which could be ASIC (Application-Specific Integrated Cir-
cuit) or FPGA (Field-Programmable Gate Array), is more appropriate than software.
A problem is that, one chip always is implemented for one or few standard, and operates
on one frequency channel at a time. One option is to construct an equipment with
multiple chips to support multiple standards and channels, though this will be not only
costly but also inconvenient to program and coordinate from the perspective of the
developer—ASICs with dedicated configurations, drivers and inter-chip communication
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link become necessary prerequisites. For a multi-chip design, features commonly sup-
ported in C-RAN, such as dynamic computing resource sharing and migrating among
cells/channels, are very hard to realize (if not impossible). This is because multi-chip
hardware design implies fixed hardware resources allocation. An integrated new ASIC
could be designed to merge multiple chips to single chip, but simply chip merging won’t
give dynamic resource manipulation among intra ASIC blocks. In addition, long design
cycle and high development cost of ASIC would be a big obstacle on the road.

In this paper, an architecture supporting low latency processing via hardware
(FPGA) accelerators, which is still flexible enough to support multi-standard
multi-channel virtualization, is proposed to meet the requirement of diverse wireless
access at the network edge. An initial demo is also implemented based on SDR plat-
form composed by Xilinx Zynq SoC and Analog devices RF frontend.

2 Latency Analysis

Latency is one of key factors for different types of standards and application. System
architecture of wireless technology is influenced by the latency requirements and
implementation feasibility of specific latency target. In this section, we first investigate
the latency requirements of mainstream wireless standards (Sect. 2.1), and then present
the latency measurements of two types of SDR platforms, namely the USRP
(Sect. 2.2), and Xilinx Zynq SoC based SDR (Sect. 2.3).

2.1 Latency Requirement of Wi-Fi and LTE

According to Wi-Fi standard [6], the most critical latency requirement is from SIFS
(Short Interframe Space). The concept of interframe space is shown in Fig. 1, which is
from “Fig. 10-4—Some IFS relationships” of 802.11-2016 standard.

Fig. 1. 802.11 interframe space relationships
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As explained in the standard: “The SIFS is the time from the end of the last symbol,
or signal extension if present, of the previous frame to the beginning of the first symbol
of the preamble of the subsequent frame as seen on the WM. The SIFS shall be used
prior to transmission of an Ack frame…”. The SIFS specified in the standard is 10 ls or
16 ls, depending on band (2.4 GHz or 5 GHz) and PHY type (DSSS, OFDM, etc.). For
the 60 GHz band system, which has directional multi-gigabit ability, SIFS is only 3 ls.

Unlike Wi-Fi’s CSMA/CA MAC mechanism, in LTE system everything is sched-
uled in advance, including acknowledgement of HARQ (Hybrid Automatic Repeat
Request) process. Figure 2 shows LTE uplink HARQ procedure (Fig. 10.14 of [11]).

In uplink HARQ, base station has 3 ms to make acknowledgement in downlink
PHICH (Physical Hybrid ARQ Indicator Channel) after it receives uplink IQ samples
of PUSCH (Physical Uplink Shared Channel). According to the C-RAN white paper
[2], base station needs 800–900 ls after receiving IQ samples of each 1 ms. So the
round trip latency budget between RRH and BBU is around 100–200 ls.

According to CPRI over fiber specification [3], maximum one-way latency of CPRI
link is 5 ls. Besides CPRI latency, other latency overheads between RRH and
BBU include physical distance, buffers, switches, cloud computer interface (Ethernet/
PCIe/OS), etc. All together should less than round trip latency budget of C-RAN
fronthaul. CPRI over Ethernet [12] is a hot topic in C-RAN fronthaul area, because not
every places/areas have fiber coverage.

2.2 Latency Measurement Results of USRP + Host Computer

USRP (Universal Software Radio Peripheral) [13] SDR platform is the most widely
used platform in research community. In most cases, it is used jointly with host
computer, which can be (to some extent) regarded as a minimum version of C-RAN.
The latency test is provided by the UHD (USRP Hardware Driver) [14] native example:
latency_test [15]. Table 1 shows the measurement results of different USRPs combined
with different computer communication links. Each latency result is measured and
averaged over 10 round tests of 5 M, 10 M and 25 M sampling rates.

Fig. 2. Timing diagram of the uplink HARQ (SAW – Stop And Wait) protocol
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The latency measurement results show that the host computer based SDR archi-
tecture can’t meet SIFS requirement of Wi-Fi system, but it is good enough to be used
for current LTE system, because latency of *100 ls only consumes tiny portion of
LTE processing time needed by HARQ process. That is why there are already several
host-computer based LTE systems, such as srsLTE [16], OAI (Open Air Interface) [17]
and amarisoft [18], which work quite well. On the contrary, almost all Wi-Fi SDR
implementations, such as NI 802.11 Application Framework [19] and WARP (Wireless
Open-Access Research Platform) [20], use FPGA to do processing instead of host
computer.

2.3 Latency Measurement Results of Xilinx Zynq-7000 SoC

Xilinx Zynq-7000 All Programmable SoC (System on Chip) [21] includes two parts:
PL (Programmable Logic) and PS (Processing System). PL actually is a traditional
FPGA, which can do computation intensive operation and latency critical tasks. PS is a
multi-cores ARM cortex AP (Application Processor), which is suitable to run control
program, higher layer protocol and oeprating system. PL and PS are connected by
multiple AXI (Advanced eXtensible Interface) high speed buses, which have low
latency and high throughput performance. We evaluate its latency using a dummy
FPGA block interacting with an ARM testing program in bare metal mode.

The testing system was constructed as in Fig. 3. The dummy FPGA acceleration
block was designed by Xilinx HLS (High Level Synthesis) tool. The block receives data
from PS in streaming manner via Xilinx DMA (Direct Memory Access) module, and
stream the processed result (same amount of data as input) back to PS via DMA. It takes
654 clock cycles for this FPGA block to process 128 input samples, each sample is
represented as a 32-bit word on the 32-bit AXI stream bus. The configuration interface
between PS, PL and DMA controller is AXI_LITE, which is connected to M_AXI_GP
port of ARM. Data link is AXI stream, which is connected to S_AXI_HP port of ARM.
A DMA controller was used to convert AXI Memory Mapped interface (needed by PS)
to AXI Stream interface (needed by streaming mode FPGA accelerator).

ZC706 Evaluation Board [22] for the Zynq-7000 XC7Z045 SoC is used to do the
evaluation. Clock speeds of our design are as follows: AXI buses and PL run at
200 MHz, and ARM cortex-A9 processor run at 800 MHz. Xilinx ILA (Integrated
Logic Analyzer) is inserted to the design for event recording with 5 ns resolution.
The ARM software event is recorded by writing special value to PL register and
detecting this value via ILA. The latency profiling result is shown in Fig. 4.

Table 1. Round trip latency between RF frontend and host computer software.

USRP type Link type Latency (us) Host computer configuration

X310 PCIe 79 Intel i7-6700 3.4 GHz, NI PCIe �4 card
X310 10 Gbps Ethernet 106 Intel E5-2650 v4 2.2GH, Qlogic 57810 Eth
X310 1 Gbps Ethernet 101 Intel i7-6700 3.4 GHz, Intel i219-v Eth
B210/200mini USB 3.0 66 Intel i7-6700 3.4 GHz, Intel controller
N210 1 Gbps Ethernet 103 Intel i7-6700 3.4 GHz, Intel i219-v Eth
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Figure 4 shows the event log of the entire round trip delay test captured by
Xilinx ILA. First, the software start DMA transmission at −0.135 ls; then DMA
controller receives the instruction at 0 ls via AXI LITE register interface; After some
internal preparation and buffering operation, the actual DMA transmission on the AXIS
bus starts at 0.3 ls; After 3.295 ls, which is caused by the accelerator processing
latency of 654 clocks at 200 MHz, the accelerator completes the data transfer of
processing results back to DMA controller in streaming manner; Then DMA controller
raises interrupt to PS at 4.48 ls; Finally, software becomes aware of this event at
4.595 ls. So the round trip latency between the FPGA accelerator and software in PS is
4.595 + 0.135 − (3.595 − 0.3) = 1.435 ls. Note that this is superior performance
comparing to the latency of USRP variants, and it is even not a significant overhead
compared to the Wi-Fi SIFS requirement (16 ls or 10 ls).

3 Architecture Design

Hardware/FPGA implementation or hardware/FPGA accelerated software is necessary
to achieve realtime operation of certain wireless standards, such as Wi-Fi. Even for
mobile operator, in the era of beyond LTE, 5G is also considering much lower latency

Fig. 3. Diagram of Latency test for Zynq-7000 Platform. M_* – master AXI interface; S_* –

Slave AXI interface; AXIS – AXI streaming interface; *_GP – General Purpose (for register
read/write); *_HP – High Performance (for data transfer)

Fig. 4. Latency test result of Zynq-7000 SoC Platform
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(at sub millisecond) than LTE. All these trends imply that pure centralized/cloud based
software solution won’t be the silver bullet. However, simply using pure ASCI/FPGA
design to meet performance/latency requirement will lose software-like flexibility, such
as virtualization and effective coordination among channels and standards. Exploring
an architecture, which has both hardware/FPGA performance and software flexibility,
would be a more attractive option for next generation wireless network.

Figure 5 shows an architecture design to meet diverse requirements in a flexible
way. First, the wideband multi-antenna RF frontend is connected to a resource slicing
module. Then, resource slicing module handles IQ samples to/from specific slice, such
as a channel, time slot, antenna/beam, under the software control of PS. Next, slice
specific IQ samples are routed via on chip network to/from different destinations
according to latency requirements. If the IQ samples belong to a low latency service
(UAV/self-driving-car control) or standard (Wi-Fi), their destination/source will be
likely other on-chip hardware accelerators. For IQ samples of radio slices which carry
mid-long latency service (watching TV) or standard (LTE), they can be routed to pure
software domain: either on-chip processor system or off-chip network interface (Eth-
ernet, CPRI, etc.) until a processing unit in a host computer is reached.

To support pure-software-like virtualization and flexibility characteristic for the
on-chip hardware accelerator, the accelerator design and on-chip real-time scheduling
are the two key enablers. Besides the fact that the accelerator itself needs to meet
latency/performance requirement, but also be general enough so that it can be shared by
multiple standards. Thanks to that OFDM has been widely adopted by many standards,
different standards do share some common processing units. Furthermore, a special
issue needs to be addressed when sharing accelerators among multiple slices, this is
context saving and restoring of the accelerators. Because when an accelerator is used
among multiple slices in TDM (Time Division Multiplex) mode, it has to maintain
context internally for each slice it serves. This is necessary to resume accelerator
execution for a specific slice from its previous state before interruption. Needless to
say, the software design to schedule diverse accelerators for different slices is also a
challenging task on its own. This software is essential to achieve effective spectrum
utilization with multiple standards/channels coordinated.

Fig. 5. ORCA Architecture supports both hardware-like low latency performance and
software-like flexibility
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4 Demonstration

A demo is setup as shown in Fig. 6 to proof the concept of radio hardware virtual-
ization. The SDR platform is composed by Xilinx zc706 evaluation board together with
Analog Devices fmcomms2 RF front end [23]. A host computer is connected to the
SDR platform for visualization and processing mid-long latency task. Three standards
are covered in the demo: Wi-Fi/802.11 20 MHz mode, Zigbee/802.15.4 2.4 GHz
version, and BLE.

Ten virtualized preamble detection instances and one BLE (Bluetooth Low Energy)
[24] broadcaster instance are created from resource slicing module and a dual-mode
preamble detector (as accelerator) in FPGA under the scheduling software in ARM
processor. RF front end has two receiving antennas and two transmitting antennas(rx0,
rx1 and tx0, tx1 in Fig. 6), and works in 40 MHz bandwidth mode. For each rx
antenna, resource slicing module creates one 20 MHz Wi-Fi channel and four 5 MHz
Zigbee channels (overlapped with Wi-Fi) by five DDC (Digital Down Converter).
Central frequency of each rx antenna’s DDC can be tuned independently inside the
range of 40 MHz bandwidth. In the demo, rx0 is tuned to cover upper 20 MHz of
40 MHz; rx1 is tuned to cover lower 20 MHz of 40 MHz. Ten (five per rx antenna)
slices’ IQ sample are routed to ARM processor, then fed one by one to the preamble
detector by control software for preamble searching. 9.6Gbps AXI bus is used to
construct on chip network. Dedicated AXI links are setup between resource slicing,
preamble detector and ARM processor.

ARM reports Wi-Fi and Zigbee packet counting results of each slice to host
computer via Ethernet. A program in computer analyzes channel status according to

Fig. 6. Radio hardware virtualization demo setup
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packet counting report, then it will: (1) select a good BLE broadcasting channel from
three options: 2402 MHz, 2426 MHz, 2480 MHz; (2) generate IQ samples for BLE
broadcasting packet [25] with Wi-Fi and Zigbee packet counting information encoded;
(3) Send BLE IQ samples to ARM processor in the SDR platform via Ethernet.
Resource slicing module broadcasts the BLE packet into the air via the right tx slice
(frequency, timing and antenna) under ARM software control. Finally, a user can read
the BLE message, which contains Wi-Fi and Zigbee packet counting information, on
their equipment (phone, pad) screen by general purpose BLE scanner App, for instance,
LightBlue and BLE Scanner. In the demo, BLE broadcasting is an example of mid-long
latency service which is handled by host computer instead of FPGA.

A dual-mode preamble detector (16-sample auto-correlation algorithm) is designed
based on similar structure of Wi-Fi and Zigbee’s preamble. According to the standards,
at Wi-Fi baseband rate 20 Msps and Zigbee half baseband rate 1 Msps, both preambles
have the form of repeating 16-sample random signal. The only difference is that: Wi-Fi’
preamble has 160 samples which is generated by repeating 16-sample signal 10 times;
Zigbee repeats 8 times, which results in 128-sample preamble.

C language is used to develop both FPGA and ARM software. By Xilinx HLS C,
resource slicing and preamble detector blocks achieve 200 MHz clock speed. AXI bus
run at 64-bit 200 MHz mode. Each AXI 64-bit word contains two IQ samples (16-bit I
and 16-bit Q sample for each antenna). To process 512 samples, which means 25.6 ls
under Wi-Fi baseband rate, 512 ls under half Zigbee baseband rate, preamble detector
needs only 1094 clocks, i.e. 5.47 ls, according to FPGA synthesis report. So, it is fast
enough to handle two Wi-Fi slices and ten Zigbee slices. Because the speed of
accelerator consuming IQ sample is higher than speed of ten rx slices generating IQ
sample. The whole processing system won’t lose any IQ-sample/signal, as if there are
ten preamble detector running in fully parallel (logically). Different from technology in
[26], multiple virtual AP (Access Point) share one Wi-Fi channel by time division, our
implementation allows running multiple APs in multiple channels concurrently without
implementing standalone FPGA block for each channel.

For the control software, a basic control slot length is 25.6 ls (512 samples of
Wi-Fi), which is also the basic time slot length of resource slicing. 20 slots compose a
control period. Different tasks, such as ten preamble detection tasks, one BLE broad-
casting task, host computer communication task, tx/rx frequency tuning task, are
scheduled in different time slots according to upstream producing rate and latency
requirement, just like a computer running multiple programs. By carefully arranging
the schedule, there are ten rx instances and one tx instances running in fully parallel
from the end user point of view. In this way, a set of radio hardware resources (RF front
end, accelerator, etc.) get virtualized to multiple instances.

5 Conclusion and Future Work

ORCA project tries to push the virtualization in cloud/host-computer domain to radio
hardware level to solve the spectrum sharing issue under diverse wireless access sce-
nario. By building a platform with a software-hardware co-design philosophy, devel-
oper can use the platform to create multiple concurrent virtualized instances from the
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low latency high performance hardware/FPGA accelerator. A hierarchical latency
handling methodology is proposed to utilize different characters of hardware/FPGA
and host computer. With this architecture, multiple wireless accesses run fully in
parallel, just like running multiple programs on the same CPU, to maximize utilization
of FPGA accelerators. A demo showcase is made to proof the concept by running
concurrent two Wi-Fi, eight Zigbee and one BLE instances in 40 MHz bandwidth from
the same set of FPGA resource. During the demo development, high level synthesis
and processor controlled on chip network are used to shorten the development cycle
significantly compared with traditional HDL (Hardware Description Language) based
development method. Demonstration results show that this high level design
methodology can also generate high performance FPGA blocks.

In the future, software framework and API will be refined in a more formatted way
to abstract on chip resources, such as accelerator and on-chip high-speed network. By
doing so, FPGA developer and software developer can design platform compatible
accelerator and virtualized wireless access service in the more efficient and coordinated
way.
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No. 732174 (ORCA project).
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