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Abstract. In this paper we investigate the impact that incomplete
knowledge regarding user activity can have on the equilibrium transmis-
sion strategy for an OFDM-based communication system. The problem
is formulated as a two user non-zero sum game for independent fading
channel gains, where the equilibrium strategies are derived in closed form.
This allows one to show that a decrease in uncertainty about the user
activity could reduce the number of subcarriers jointly used by the users.
For the boundary case (with complete information, which reflects a clas-
sical water-filling game) the equilibrium strategies are given explicitly.
The necessary and sufficient conditions, when channels sharing strate-
gies are optimal, is established as well as the set of shared subcarriers is
identified. The stability of the upper bound of the size of this set with
respect to power budgets is derived.
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1 Introduction

Multiuser power control problems in wireless networks employing orthogonal
frequency division multiplexing (OFDM) technology [15] and its variants like
noncontiguous orthogonal frequency division multiplexing (NC-OFDM), where
only a subset of all subcarriers are used due to either to avoid incumbent trans-
missions or tactical considerations [19] have received significant research interest
in current and future wireless communication systems due to their reliability,
adaptability and spectral efficiency. Selfish behaviour of users in OFDM style
systems has been extensively studied in the literature (see, for example [11], and
references therein). An important tool for designing optimal power allocation as
well as estimating their effectiveness is game theory. This is due to the fact that,
in general, such systems are multi-agent systems where each agent has its own
(selfish) goal to achieve. Game theory supplies solutions for such multi-agent
problems as well as methods to find them (see, for example [11] as a survey for
such concepts and applications to wireless problems). In [21], a multiuser power
control problem in a frequency-selective interference channel was modeled by a
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two-player game. A condition on fading channel gains was derived to guarantee
existence of a Nash equilibrium as well as that this equilibrium is unique and
stable, i.e., an iterative water-filling algorithm can efficiently reach the Nash
equilibrium. In [12], a power allocation problem in the downlink of wireless net-
works, where multiple access points send independent coded network informa-
tion to multiple mobile terminals through orthogonal channels was formulated as
non-zero sum game. It was proven that this is a potential game having a unique
equilibrium with probability one. In [16], a problem to maximize information
rates for the Gaussian frequency-selective interference channel was formulated
as a noncooperative game of complete information and an asynchronous iterative
water-filling algorithm was proposed to achieve the Nash equilibria. In [1], closed
form solutions for the symmetric water-filling game with equal crosstalk coeffi-
cients was obtained. This allows one to derive the conditions for which there is a
unique solution or multiple solutions. In [17], the saddle point was found explic-
itly in a jamming game where a user and a jammer has enough energy to employ
all the channels in their optimal behaviour. In [3,4], a game theoretic analysis of
secret and reliable communication under combined jamming and eavesdropping
attack was given. In [18], a problem of multiband transmission under hostile
jamming modeled by zero-sum game was solved. In [9], a bargaining solution
over the fair trade-off between secrecy and throughput was derived.

In this paper, we investigate the impact that incomplete knowledge about
user activity can have on the equilibrium OFDM transmission strategy. The
problem is formulated as a two user non-zero sum game for independent fading
channel gains. This impact is investigated by means of two algorithms devel-
oped to find equilibrium strategies. The first is the best response strategies algo-
rithm illustrating learning mechanism to reach an equilibria. The second one is
a superposition of two bisection methods based describing the equilibrium in
closed form. For the case of complete knowledge about whether a user is active
(which corresponds to classical water-filling problem) the equilibrium strategies
are given explicitly. To the best of our knowledge, this classical water-filling game
has not been yet solved explicitly in the literature. The necessary and sufficient
conditions for when subcarrier sharing strategies are optimal is established, as
well as the set of shared subcarriers is identified.

The organization of this paper is as follows: in Sect. 2, a model of transmis-
sion with incomplete information is formulated, and the convergence of the best
response algorithm is proven. In Sect. 3, the equilibrium strategies are derived in
closed form as well as an algorithm to find them based on superposition of bisec-
tion methods is given. In Sect. 4, for the boundary case of complete information
the strategies are found explicitly. Finally, in Sect. 5, conclusions are offered, and
in Appendix sketch of the proof of the obtain results are given.

2 Formulation of the Problem

We assume that the total spectrum band that can be used jointly by two users
for communication with one receiver is split into n subcarriers. One of the users
(called, user 1) is active, i.e., he communicates with certainty. User 1 has only
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a priori knowledge about the other user (called, user 2) being active. Namely,
user 1 knows that with a priori probability q1 that user 2 will be active, while
with probability q0 user 2 will not be active.

The strategy of user j (j = 1, 2) is a power allocation vector P j =
(P j

1 , . . . , P j
n) with P j

i ≥ 0 is the power assigned to transmit in subcarrier i,
∑n

i=1 P j
i = P

j
where P

j
is the total power to transmit. Let Πj be the set of all

feasible strategies for user j. The payoff v1 to user 1 is the expected throughput,
while the payoff v2 to user 2 is the throughput given as follows:
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(1)

where hj
i is the fading channel gains and σ2 is the background noise power. Thus,

in (1), we deal with the scenario involving independent fading channels.
Since user 1 has only a priori knowledge about whether user 2 is active,

while user 2 knows about his activity, this is a Bayesian game [11]. Bayesian
approaches have been widely used for modeling network problems, such as to
incorporate an incentive mechanism in a cooperative medium access scheme in
a wireless relaying network [13], to design anti-eavesdropping strategies when
eavesdropper might be an active adversary [6], and for intrusion detection in
wireless ad hoc networks [20].

We look for (Nash) equilibrium strategies. Recall that (P 1
∗ ,P 2

∗ ) is an
equilibrium if and only if for any (P 1,P 2) the following inequalities holds:
v1(P 1,P 2

∗ ) ≤ v1(P 1
∗ ,P 2

∗ ) and v2(P 1
∗ ,P 2) ≤ v2(P 1

∗ ,P 2
∗ ). Thus, (P 1

∗ ,P 2
∗ ) is an

equilibrium if and only if they are the best response strategy to each other.
i.e., P 1

∗ = BR1(P 2
∗ ) := argP 1∈Π1 max v1(P 1,P 2

∗ ) and P 2
∗ = BR2(P 1

∗ ) :=
argP 2∈Π2 max v2(P 1

∗ ,P 2).

Theorem 1
(a) The considered game has an equilibrium.
(b) The best response strategies (P 1,P 2) = (BR1(P 2),BR2(P 1)) can be

found in water-filling form as follows:
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, i = 1, . . . , n

with ω being the unique root of the equation
∑n

i=1 P 1
i (ω) = P

1
and

P 2
i = P 2

i (ω) :=
⌊
1/ω − (σ2 + h1

i P
1
i )/h2

i

⌋
+

, i = 1, . . . , n

with ω being the unique root of the equation
∑n

i=1 P 2
i (ω) = P

2
.

(c) The best-response algorithm converges to an equilibrium. Namely, let P 2
0

be any strategy of user 2, P 1
1 = BR1(P 2

0 ), P 2
1 = BR2(P 2

1 ) and so on. Then,
(P 1

k ,P 2
k ) converges to an equilibrium.
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3 Equilibrium Strategies in Closed Form

In this section, we obtain the solution in closed form as a function of two auxiliary
parameters. This allows us to examine the structure of the strategies as well as
to design an alternative algorithm based on the bisection method, which can
find these parameters and thereby determine the equilibrium strategies.

Theorem 2. The equilibrium strategies (P 1,P 2) of the considered game with
q0 > 0 must have the following form with ω1 and ω2 as positive parameters:

P 1
i = P 1
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with
I00(ω1, ω2) =

{
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i

}
,
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{
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i , ω
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{
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i , q
1ω2/h2

i + q0/σ2 ≤ ω1/h1
i

}
,

I11(ω1, ω2) =
{
i : ω2/h2

i < ω1/h1
i < q1ω2/h2

i + q0/σ2
}

.

In particular, Theorem 2 (and subsequently Theorem 4) specify the subcarriers
that are either not used (I00), or used by just one of the users (I10) and (I10), or
by both users (I11). The strategies can be considered subcarrier-sharing if the
set of the shared subcarriers I11 is empty.

Theorem 3. The set of subcarriers I11(ω1, ω2) employed by the users for joint
use is non-decreasing in probability q0.

The value of the parameters ω1 and ω2 are defined based on the condition
that the power resources H1(ω1, ω2) and H2(ω1, ω2) employed by P 1(ω1, ω2)
and P 2(ω1, ω2) have to be equal to P

1
and P

2
, i.e.,

Hk(ω1, ω2) :=
n∑

i=1

P k
i (ω1, ω2) = P

k
, k = 1, 2. (4)

In the following Proposition, which follows directly from Theorem 2, auxiliary
properties of the functions H1 and H2 are given.



OFDM Transmission Strategy 215

Proposition 1
(a) For a fixed ω2, H1(ω1, ω2) is continuous on ω1 and decreasing from

infinity for ω1 ↓ 0 to zero for ω1 ≥ maxi(q0/σ2 + q1ω2/h2
i ).

(b) For a fixed ω1, H1(ω1, ω2) is continuous and increasing on ω2 such that

H1(ω1, 0) =
n∑
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�q0/ω1 − σ2/h1
i �+,

H1(ω1, ω2) =
n∑
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i
(h2

i /h1
i ).

(c) For a fixed ω2 there is an Ω1(ω2) such that

H1(Ω1(ω2), ω2) = P
1
. (5)

(d) Ω1(ω2) is continuous and increasing on ω2 such that Ω1(0) = ω1 and
Ω1(∞) = ω1 with ω1 and ω1 uniquely given as roots of the equations:

n∑
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⌊
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i=1
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1/ω1 − σ2/h1
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= P
1
. (6)

(e) For a fixed ω1, H2(ω1, ω2) is continuous on ω2 and decreasing from infin-
ity for ω2 ↓ 0 to zero for ω2 ≥ ω2 := maxi h2

i max{1/σ2, ω1/h1
i }.

(f) H2(Ω1(ω2), ω2) is continuous on ω2 such that H(Ω1(ω2), ω2) tends to
infinity for ω2 tending to zero, and H2(Ω1(ω2), ω2) = 0 for ω2 ≥ ω2. Thus, the
root of the following equation exists and it can be found by bisection method:

H2(Ω1(ω2), ω2) = P
2
. (7)

Proposition 2 and Theorem 2 directly imply the following main result:

Theorem 4. For q0 > 0 the equilibrium strategies are given by (2) and (3),
where ω1 = Ω1(ω2) with Ω1 given by (5), while ω2 is given by (7). Due to the
monotonic properties of H1 and H2 the Ω1(ω2) can be found by the bisection
method for each fixed ω2, while the optimal ω2 can be found by the superposition
of two bisection methods.

As an illustrative example throughout the paper we consider the total spec-
trum band consisting of five subcarriers, i.e., n = 5, the background noise
power is σ2 = 1 and the fading channel gains are h1 = (0.2, 0.5, 0.4, 0.1, 0.6),
h2 = (0.23, 0.1, 0.5, 0.15, 1). Figure 1 illustrates an increase in the payoff to user
1 and a decrease in the payoff to user 2 with an increase in a priori probability
q0 for user 2 to be non-active. Of course, an increase in the power resource of
user 2 leads to an increase in his payoff and in a reduction of the payoff to user 1.
Figure 2 illustrates that for small power budget of user 2 (P

2
= 0.5) the users

employ subcarrier sharing strategies (i.e. I11 is empty). An increase in his power
budget makes the user to employ the subcarriers user 1 also uses. Namely, for
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P
2

= 1 the set I11 is empty for q0 < 0.57 and I11 = {5} for q0 > 0.57. While for
P

2
= 1.5 the set I11 = {3} for q0 < 0.75 and I11 = {3, 5} for q0 > 0.75. Thus,

an increase in the probability q0 leads to an increase in interference reflected by
an increase in number of the subcarriers involved in being jointly employed by
both users.

Fig. 1. The payoff to user 2 (left) and the payoff to user 1 (right) as functions on a

priori probability q0 and power budget P
2

with P
1

= 1.

Fig. 2. Strategies of users for P
2

= 0.5 (left), P
2

= 1 (center) and P
2

= 1.5 (right)

with P
1

= 1.

4 Both Users Always are Active: Explicit Solution

In this section we obtain the equilibrium strategies explicitly in an important
boundary case for the a priori probability q0 = 0, i.e., when both users always are
active. This case coincides with two-person water-filling game in classical frame-
work with independent fading channel gains. To get the equilibrium explicitly
let us introduce an auxiliary notations. First, to avoid bulkiness in formulas we
assume that all the subcarriers are different in ratio of fading channel gains for
the users, i.e., hi 
= hj with i 
= j, where hi := h2

i /h1
i . Then, without loss of

generality we can assume that the subcarriers are arranged in increasing order
on ratio

h1 < h2 < . . . < hn < hn+1 := ∞. (8)
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k∑
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Due to the left side of the first equation (9) is decreasing on ω and increasing
on k we have that ω1

k+1 > ω1
k. While due to the left side of the second equation

(9) is decreasing on ω and k we have that ω2
k+1 < ω2

k. Thus, ξk is decreasing on
k where

ξk := ω2
k/ω1

k for k = 1, . . . , n − 1 and ξ0 = ∞ and ξn = 0. (10)

Theorem 5. The considered game with q0 = 0 has the unique equilibrium
(P 1,P 2).
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and ω1 is the unique positive root of the equation

F (ω1) :=
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Since ξi is decreasing while hi is increasing, the condition (11) and (13) uniquely
define the switching subcarrier k. The equilibrium strategies cannot jointly
employ more than one subcarrier. It is interesting to note that a similar band
sharing phenomena we can observe in bandwidth scanning strategy under incom-
plete information about adversary’s activity [5,7,8]. If (11) holds than the strate-
gies are subcarrier sharing while if (13) holds the equilibrium strategies subcar-
rier sharing except the only subcarrier k which they use jointly. Thus, (11) is the
necessary and sufficient condition for the equilibrium strategy to be subcarrier
sharing. Figure 3(left) illustrates that an increase in power budget of user 2 leads
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to a decrease in switching subcarrier while an increase in power budget of user
1 impacts on switching subcarrier in opposite way. Also, it illustrates sequen-
tial switching between the criteria with an increase of users’ power budgets.
Figure 3(center) illustrates that an increase in power budget to user 2 leads to
an increase in switching subcarrier k, while an decrease in power budget to user
1 yields into an increase in k. An increase of power budget to a user leads to an
increase in his payoff and in a decrease in the payoff to the other (Fig. 3(right)).
A surprising property of the equilibrium strategies is that an increase in power
budgets cannot lead to employing more than one subcarrier for joint using.
This is quite different from the scenario with one of the users being malicious
where an increase in power budgets make the users employ more and more
subcarriers [10,17].

Fig. 3. The switching subcarrier k (left) and the cases of Theorem 5 (center) and

payoffs to the users (right) as functions on P
1

and P
2
.

5 Conclusions

In this paper, by means of a two users non-zero sum OFDM transmission game
with independent fading channel gains, we investigate an impact of incomplete
knowledge about whether a user is active on the equilibrium transmission strat-
egy. Two algorithms to find equilibrium strategies are given. The first is the
best response strategies algorithm illustrating learning mechanism to reach an
equilibria. The second one is a superposition of two bisection methods based
describing the equilibrium in on closed form. It allows to show that an decrease
in uncertainty about the user to be active reduces size of the set of shared sub-
carriers. For the boundary case (i.e. complete knowledge about a user to be
present, which reflects a classical water-filling game) the equilibrium strategies
are given explicitly. The necessary and sufficient conditions, when subcarrier
sharing strategies are optimal, is established, as well as the set of shared sub-
carriers is identified. Stability of the upper bound of size of this subcarriers’
set to an increase of users’ power budgets is proven, what can be applicable for
NC-OFDM networks.

Acknowledgments. This work is supported in part by a grant from the U.S. Office
of Naval Research (ONR) under grant number N00014-15-1-2168.
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A Appendix

Proof of Theorem 1: Since vj(P 1,P 2) is concave on P j , (a) follows [2]. The
KKT Theorem straightforward implies (b).

(c) It is clear that the sets of equilibrium coincide for the games with payoffs
scaled by positive multiplies. That is why, to find equilibrium instead of the
original game with payoffs (v1, v2) we can consider equivalent game with payoffs
(V 1, V 2) = (v1, q1v2). The last game is an exact potential game [14], and so, the
best response algorithm converges. Recall that the game with payoffs (V 1, V 2)
is an exact potential game if and only if there is a function V (P 1,P 2) such that
for any strategies (P 1,P 2) and (P 1

∗ ,P 2
∗ ) the following conditions hold:

V (P 1
∗ ,P 2) − V (P 1,P 2) = V 1(P 1

∗ ,P 2) − V 1(P 1,P 2),

V (P 1,P 2
∗ ) − V (P 1,P 2) = V 2(P 1,P 2

∗ ) − V 2(P 1,P 2).
(17)

It is clear for the function

V (P 1,P 2) = q1
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the condition (17) holds, and the result follows. �

Proof of Theorem 2: Since vj(P 1,P 2) is concave on P j , by KKT Theorem,
(P 1,P 2) is an equilibrium if and only if there are ω1 and ω2 (Lagrangian mul-
tipliers) such that the following conditions hold:
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Thus, by (18) and (19), we have that
(a) if P 1 = 0 and P 2 = 0 then h1

i /σ2 ≤ ω1 and h2
i /σ2 ≤ ω2,

(b) if P 1 > 0 and P 2 = 0 then P 1
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i /h1
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and the result follows. �

Proof of Theorem 3: The set of the channels jointly used by both users is
I11(ω1, ω2) =

{
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i < q1ω2/h2

i + q0/σ2
}
. First, note that due to
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i is increasing on q0, and the result follows. �
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Proof of Theorem 5: Since vj(P 1,P 2) is concave on P j , by KKT Theorem,
(P 1,P 2) is an equilibrium if and only if there are ω1 and ω2 (Lagrangian mul-
tipliers) such that the following conditions hold for m = 1, 2 :
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i /ω2 > σ2.

(21)
By (21), if P 1

i > 0 and P 2
i > 0 then h2

i /h1
i = ω2/ω1. Thus, by (8), both strategies

can employ only at most one channel for joint use. Moreover, there is a k such
that

P 1
i

⎧
⎪⎨

⎪⎩

> 0, i < k − 1,

≥ 0, i = k,

= 0, i > k,

and P 2
i

⎧
⎪⎨

⎪⎩

= 0, i < k − 1,

≥ 0, i = k,

> 0, i > k,

(22)

where (a) P 1
k > 0 and P 2

k > 0 if h2
k/h1

k = ω2/ω1, (b) P 1
k > 0 and P 2

k = 0 if
h2

k/h1
k < ω2/ω1, and (c) P 1

k = 0 and P 2
k > 0 if h2

k/h1
k > ω2/ω1.

Thus, by assumption (8), we have to consider separately two cases: (A) there
is a k such that hk < ω2/ω1 < hk+1, (B) there is a k such that hk = ω2/ω1.

(A) Let there exist a k such that hk < ω2/ω1 < hk+1. Then, by (21), (22)
and the fact that P 1 ∈ Π1 and P 2 ∈ Π2, we have that P 1 and P 2 have to be
given by (12), and ω1 = ω1

k and ω2 = ω2
k. Thus, (11) also has to hold.

(B) Let there exist a k such that hk = ω2/ω1. Thus, (15) holds. Also, by
(21), (22) and the fact that P 1 ∈ Π1 and P 2 ∈ Π2, we have that P 1 and P 2

have to be given by (14) and also the following condition has to hold:

σ2 + h1
kP 1

k + h2
kP 2

k =
h1

k

ω1 =
h2

k

ω2 (23)

By (23) with right side h1
k/ω1, P 1

k = 1/ω1 − (σ2 + P 2
k )/h1

k < 1/ω1 − σ2/h1
k.

Substituting this P 1
k into (14) and taking into account that P 1 ∈ Π1 yield that

ω1 ≤ ω1
k. (24)

Similarly, dealing with strategy P 2 in condition (23) with right side h2
k/ω2

implies that
ω2 ≤ ω2

k−1. (25)
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By (14), the condition (23) with right side h1
k/ω1 is equivalent to

σ2 + h1
k

⎛

⎝P
1 −

k−1∑

j=1

⌊
1
ω1 − σ2

h1
i

⌋

+

⎞

⎠ + h2
k

⎛

⎝P
2 −

n∑

j=k+1

⌊
1
ω2 − σ2

h2
i

⌋

+

⎞

⎠ =
h1

k

ω1 .

(26)
Substituting (15) into (26) implies (16).

Since the left side of Eq. (16) is decreasing on ω1, by (24), it has a root if and
only of F (ω1

k) < P
1

+ hkP
2
. This condition is equivalent to

P
2

>

n∑

j=k+1

⌊
1

ω1hk

− σ2

h2
i

⌋

+

= (by (15)) =
n∑

j=k+1

⌊
1
ω2 − σ2

h2
i

⌋

+

.

Thus, ω2 > ω2
k. Substituting (15) in the last inequality and taking into account

(24) implies that
ξk < hk. (27)

By (14) and (15), the condition (23) with right side h2
k/ω2 is equivalent to

G(ω2) :=
k−1∑

j=1

⌊
1
ω2 − σ2

h1
i hk

⌋

+

+
n∑

j=k

⌊
1
ω2 − σ2

h2
i

⌋

+

= P
1
/hk + P

2
. (28)

Thus, by (25), this equation has a positive root if and only if G(ω2
k−1) < P

1
/hk+

P
2
. By (15) and (28), this is equivalent to ω1

k−1 < ω1. This, jointly with (15)
and (25), implies that ξk−1 > hk. Then, taking into account (27) yields (13),
and the result follows. �
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