
PdUC-D: A Discretized UAV Guidance
System for Air Pollution

Monitoring Tasks

Oscar Alvear1,2(B), Carlos T. Calafate1, Nicola Roberto Zema3,
Enrico Natalizio4, Enrique Hernández-Orallo1, Juan-Carlos Cano1,

and Pietro Manzoni1

1 Department of Computer Engineering, Universitat Politècnica de València,
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Abstract. Discretization is one of the most efficient mathematical
approaches to simplify (optimize) a system by transforming a contin-
uous domain into its discrete counterpart. In this paper, by adopting
space discretization, we have modified the previously proposed solu-
tion called PdUC (Pollution-driven UAV Control), which is a protocol
designed to guide UAVs that monitor air quality in a specific area by
focusing on the most polluted areas. The improvement proposed in this
paper, called PdUC-D, consists of an optimization whereby UAVs only
move between the central tile positions of a discretized space, avoiding to
monitor locations separated by small distances, and whose actual differ-
ences in terms of air quality are barely noticeable. Experimental results
show that PdUC-D drastically reduces convergence time compared to
the original PdUC proposal without loss of accuracy.
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1 Introduction

Air pollution is a hazard not only affecting urban areas (cities) [1], but also rural
and industrial environments [2] in different aspects such as crop yield, forest and
animal health, among others.

In the literature, we can observe that traditional methods for air pollution
monitoring (fixed monitoring stations) are gradually being replaced by mobile
crowdsensing sensors that are small enough to be carried around by users, or
installed in different vehicles like taxis, buses, bicycles, or any type of land
vehicle [3–7].
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The crowdsensing approach is not feasible in rural areas because it clearly
requires a minimum number of sensors to be moving inside the target area to
be applicable, a requirement that is typically not met in these remote environ-
ments. For instance, in this type of scenarios, vehicular traffic is quite scarce,
being limited to the main transportation arteries, thereby failing to provide the
required granularity in both time and spatial domains.

To effectively carry out monitoring tasks in rural scenarios, an attractive
option is to use Unmanned Aerial Vehicles (UAVs) equipped with commercial
off-the-shelf (COTS) sensors, allowing them to act as mobile sensors, able to
reach poorly accessible areas [8]. In fact, this approach allows monitoring most
locations in any target area due to UAV flexibility and maneuverability, like the
capability to take samples while hovering.

Focusing on UAV control systems for air pollution monitoring tasks, we have
previously noticed that there are no systems optimized for these purposes. So,
we proposed PdUC (Pollution-driven UAV Control [9]), a solution that puts
focus on the most polluted regions by combining a chemotaxis metaheuristic
with adaptive spiral mobility patterns to automatically track pollution sources
and surrounding pollution values in a given target area. In that previous work
[9] we showed that PdUC achieves better performances than standard mobility
approaches, like the Spiral and the Billiard patterns, in terms of discovering the
most polluted areas in a shorter time span. In this paper we propose an optimized
algorithm called PdUC-D, which is based on PdUC, but applies space discretiza-
tion to substantially reduce the convergence time while achieving similar levels
of accuracy.

This paper is organized as follows: in Sect. 2 we describe the proposed PdUC-
D protocol. Section 3 presents the implementations of the protocol in the R
tool, along with a performance comparison against the original PdUC protocol.
Finally, in Sect. 4, we present the conclusions of our work and the future work.

2 PdUC-D: Discretized Pollution-Driven UAV Control
Protocol

Despite PdUC [9] is more effective than other mobility patterns (Spiral and
Billiard) in terms of polluted areas monitoring times, finding the most highly
polluted locations earlier, PdUC still spends too much time focusing on small
variations (variations produced by sensor errors, or little pollution variations)
in nearby areas, which are not too useful when obtaining the global pollution
map; on the contrary, the Spiral and Billiard models present simpler mobility
patterns that, by themselves, avoid such redundant sampling. So, in this work,
we attempt to avoid redundant movements (sampling) by discretizing the target
area, dividing it into small tiles.

The main idea is to optimize PdUC by discretizing the whole target area in
a grid forming small tiles, as shown in Fig. 1. The UAV can only move to the
center of each tile, thereby reducing redundant sampling, which in turn reduces
the full coverage time significantly. Each tile is monitored only once.
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Fig. 1. Example of a discretized area, calculating the tiles and their center to restrict
movements.

PdUC-D, just like PdUC, is based on a chemotaxis metaheuristic and on an
adaptive spiral, with the difference that now both these mechanisms are adapted
to operate with discretized space environments. Therefore, PdUC-D first starts
by searching the tile with the highest pollution level (Search phase). Next, it
covers the surrounding area following an adaptive spiral until all the area is
covered, or until it can find another tile with a higher pollution value (Explore
phase), thereby switching back to the Search phase.

We modify the PdUC phases by adapting its functionality to space discretiza-
tion as follows:

The search phase is based on a chemotaxis mobility pattern, as shown in
Fig. 2: a particle moving in an euclidean plane between two tiles, and following
a specific direction, moves towards the next tile in the same direction (Run
move) if the pollution variation is increasing along it. Otherwise, if the pollution
variation is decreasing, it moves around the tile with higher previously monitored
pollution values, assigning higher priority to nearer tiles (Tumble move); namely,
it chooses the nearest tile. If all tiles around the one with the highest detected
value have already been monitored, the algorithm switches to the Explore phase.

The Explore phase is based on a adaptive spiral, as shown in Fig. 3 (left):
Starting at the tile with the highest monitored pollution value, it then follows
a square spiral. For each round in the spiral, it skips an increasing number of
tiles. Namely, in the first round it has an radius of 3 tiles and skips 1 tile; in the
second round, it has an radius of 5 tiles and skips 2 tiles, and so on. To avoid
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Fig. 2. Search phase: calculation of the next tile following the chemotaxis-based mobil-
ity pattern.

Fig. 3. Explore phase: adaptive spiral followed by PdUC-D showing a normal spiral
movement (left) and alternating movement (right).

excessively long steps, if the spiral radius reaches a scenario border, or previously
monitored areas, the direction of the spiral is altered, as shown Fig. 3 (right).

Figure 4 shows the behaviour of the adaptive spiral: it first starts by following
a square spiral but, when it reaches the border, it alternates the direction of
movement to rotate in the opposite direction.

With regard to movement control, and to avoid previously monitored areas,
we use two matrixes: Pm,n, and Bm,n to store the sampled values and the mon-
itored tiles, respectively. Notice that n × m represent the size of the grid, and
the position of the tiles.
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Fig. 4. Explore phase: example of the adaptive square spiral showing the possible
moves.

Pm,n =

⎛
⎜⎜⎜⎝

p1,1 p1,2 · · · p1,n
p2,1 p2,2 · · · p2,n
...

...
. . .

...
pm,1 pm,2 · · · pm,n

⎞
⎟⎟⎟⎠Bm,n =

⎛
⎜⎜⎜⎝

b1,1 b1,2 · · · b1,n
b2,1 b2,2 · · · b2,n
...

...
. . .

...
bm,1 bm,2 · · · bm,n

⎞
⎟⎟⎟⎠ (1)

First, both matrices are initialized, P with NA (null), and B with 0’s. In
the search phase, when monitoring a tile tx,y, the pollution values are stored in
Px,y, and Bx,y are set to 1. In the explore phase, as well as in the search phase,
when monitoring a tile, both P and B values are stored but, when finishing a
spiral round, all tiles inside the square are set as visited in B, thereby avoiding
to monitor the same area again in the future.

3 Validation

We have implemented PdUC-D in the R Graph tool [10], and we have run several
simulations with different configurations.

To prepare a suitable data environment, we have created various pollution
distribution maps representing ozone levels to be used as inputs for testing. These
pollution maps were also generated using the R Graph tool following Kriging-
based interpolation [11]. In particular, a Gaussian distribution is used to adjust
the parameters coming from random data sources of ozone concentration. The
actual values range between 40 and 180 ppb (parts-per-billion), thereby providing
a realistic ozone distribution.

Obtained data using PdUC-D was compared against previous results
obtained using PdUC [9]. Figure 5 shows an example of the path followed by an
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(a) PdUC

(b) PdUC-D

Fig. 5. Example of an path followed by an UAV guided by PdUC and PdUC-D proto-
cols.
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UAV using (a) PdUC and (b) PdUC-D as a guidance system. As expected, both
algorithms have, in general, a similar behaviour: the UAV starts a search process
throughout the scenario until it locates a position with the highest degree of pol-
lution (local maximum). Afterward, it follows a spiral pattern to gain awareness
of the surrounding gradients. If, while following the spiral-shaped scan path, it
finds a higher pollution value, the algorithm again switches to the search phase.
Finally, when the entire target area has been sampled, the algorithm finishes.
When adopting PdUC-D, though, we can clearly see that it achieves better per-
formance while avoiding redundant sampling.

To compare PdUC-D against PdUC [12] we use the same simulation param-
eters, previously used for validating PdUC. Table 1 summarizes the parameters
used in the simulations.

Table 1. Simulation parameters.

Parameter Value

Area 4× 4 Km

Pollution range [40–180] ppb

Sampling error 10 ppb

Max. speed 20m/s

Sampling time 4 s

Step distance 100m

Mobility models Billiard, Spiral and PdUC

Since we are proposing the PdUC and PdUC-D algorithms for rural environ-
ments, the simulation area defined is a 4×4Km area. The pollution distribution
relies on synthetic maps that are generated by combining a random Kriging
interpolation following a Gaussian model with values between 40 and 180 units
based on the Air Quality Index (AQI) [13]. Since samples are taken using off-
the-shelf sensors, which are not precise, we introduce a random sampling error of
±10 ppb based on real tests using the MQ131 (Ozone) sensor. In our simulation,
we set the maximum UAV speed to 20 m/s, a value achievable by many com-
mercial UAVs. The step distance defined between consecutive samples is 100 m
since it offers a good trade-off between granularity and flight time. Once a new
sampling location is reached, the monitoring time per sample is defined to be 4 s.

Figure 6 shows the Cumulative Distribution Function relative to the time
required to cover the whole area for PdUC and PdUC-D mobility models. It can
be seen that the PdUC-D model spends much less time (1500–3000 s) than the
PdUC model (1800–4300 s) to achieve the same goal.

To gain further insight into the goodness of the proposed algorithm, we also
analyze the relative error for the two mobility models at different time instants
(600, 1200, 1800, 2400, 3000 and 600 s); this error is defined by Eq. 2:



392 O. Alvear et al.

Fig. 6. Cumulative Distribution Function of the time spent at covering the complete
area for the PdUC and PdUC-D mobility models.

Fig. 7. Relative error comparison between the PdUC and PdUC-D mobility models at
different times.
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et =

∑m
i=1

∑n
j=1| sx,y,t−bx,y

�b |
m · n (2)

where, et is the relative error at time t; sx,y,t is the recreated pollution value at
position (x, y) using the samples taken during simulation until time t, bx,y is the
reference pollution value at position (x, y), and n and m are the dimensions of
the target area, respectively.

Figure 7 shows the temporal evolution of the relative error between model-
based predictions (PdUC and PdUC-D) and the reference values. We can observe
that both mobility models have roughly the same behavior: they start with a
high relative error, which is foreseeable since we are using Kriging interpolation
to recreate the pollution distribution, and it tends to the mean value when the
number of samples is not enough. Then, as more samples become available, the
spatial interpolation process quickly becomes more precise. Moreover, we can
observe that, even in this analysis, PdUC-D obtains better results than PdUC
by significantly reducing the relative error at different times.

4 Conclusions and Future Work

Air pollution monitoring in rural areas is a relevant issue that typically finds
many obstacles due to the lack of monitoring infrastructures, and due to the
complexity of having ground mobile sensors in many cases. In this context, UAVs
equipped with air quality sensors emerge as a novel and powerful alternative.

In this paper we follow this assumption by describing an algorithm for air
pollution monitoring tasks called PdUC-D (Discretized Pollution-driven UAV
Control), that is based on a previous work (PdUC). In particular, it operates
as an UAV guidance system to move towards the most polluted areas, and map
pollution in the surrounding area. PdUC-D has the same phases as the original
PdUC proposal (Search and Explore), and it is based in the same principles
(Chemotaxis and Adaptive Spiral), but its functionality was modified to work
in an space-discretized area, thereby making it much more optimal.

We have compared PdUC-D against PdUC by creating several simulations
in the R Tool, and comparing these results with the previously obtained ones.
Experimental results show that PdUC-D has much better performance than
PdUC in all aspects, reducing the time to cover a same area, and reducing the
error.

The next step of our research is to translated our algorithm to a real UAV,
and test it in real-world testbed.
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