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Abstract. Clustering is the subset of data mining techniques used to
agnostically classify entities by looking at their attributes. Clustering
algorithms specialized to deal with complex networks are called com-
munity discovery. Notwithstanding their common objectives, there are
crucial assumptions in community discovery – edge sparsity and only one
node type, among others – which makes its mapping to clustering non
trivial. In this paper, we propose a community discovery to clustering
mapping, by focusing on transactional data clustering. We represent a
network as a transactional dataset, and we find communities by grouping
nodes with common items (neighbors) in their baskets (neighbor lists).
By comparing our results with ground truth communities and state of
the art community discovery methods, we show that transactional clus-
tering algorithms are a feasible alternative to community discovery, and
that a complete mapping of the two problems is possible.
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1 Introduction

Data mining is a collection of techniques developed to extract latent knowledge
from data, usually with few a priori assumptions. One of the most common
tasks in data mining is the grouping of entities according to their similarity.
We call this task clustering. Clustering allows us to understand when to treat
different objects as part of the same class, whether we are planning a marketing
campaign targeting homogeneous customers, or suggesting similar movies or
books to similar audiences in a collaborative filtering entertainment platform.

Given our ever more interconnected society, complex networks emerged as
one of the most successful models to mine social data. In this scenario, clus-
tering proved to be one of the most studied problems, under the name of com-
munity discovery. Just like in clustering, the aim of community discovery is to
group entities – in this case nodes. The main difference between clustering and
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community discovery is that they are defined on data represented in a differ-
ent way. However, a number of researchers pointed out that they share many
commonalities [3].

Still, one cannot trivially apply community discovery to solve clustering and
vice versa. Notwithstanding their similarities, there are important differences
in the approaches. Community discovery assumes sparse connections [3], while
clustering can work with dense datasetsc [17]; in clustering we usually deal with
attributes with multiple types, while community discovery usually deals with a
single attribute type – edges – often binary, in the case of unweighted networks.

In this paper, we propose a community discovery → clustering mapping. To
do so, we narrow down to the specific clustering problem defined for transactional
data: the task of grouping baskets sharing common subsets of items. This allows
us to represent a network as a transactional dataset, in which each node is a
basket containing its ego-network. Then, by applying transactional clustering
algorithms, we group nodes sharing common neighbors.

We perform this operation on networks with ground truth communities, i.e.,
indicating the real communities of the nodes. We compare the result of transac-
tional clustering algorithms with state of the art community discovery. We find
that transactional clustering provides similar results when compared with it.

Our results have a number of consequences. They suggest that the community
discovery → clustering mapping is feasible: notwithstanding their differences,
it is possible to map one problem into the other. This enlarges the toolbox
of researches looking for network communities: by applying our mapping, they
could tap into a whole new set of algorithms that previously were not considered
for their problem. Our results open the way to a complete community discovery
↔ clustering, which still eludes us, but for which we provide a roadmap.

2 Related Work

In the literature we find a limited number of works on the relationship between
community discovery and clustering of transactional data.

In [9] the authors offer an in-depth comparative review of methods for clus-
tering directed networks along two orthogonal classifications: one focuses on
methodological principles, while the other classifies methods from the viewpoint
of their assumptions about what a good cluster in a directed network is.

The authors of [10] try to discover communities in social networks through a
spectral clustering method that makes full use of the network features. The core
members are used for mining communities and it also exploits Page Rank for the
spectral clustering initialization, to avoid the sensitivity to the initial centroids.

In [20] the authors face the community discovery problem by using Non-
negative Matrix Factorization (NMF ). NMF is a powerful interpretable tool
with a close relationship with clustering methods. They target different types
of networks (undirected, directed and compound) using three different NMF
techniques: Symmetric NMF, Asymmetric NMF and Joint NMF.
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In [14] the authors present a multi-level algorithm for graph clustering using
simulating stochastic flows. The graph is coarsened to a manageable size, and
then the algorithm performs on it a small number of iterations of flow simula-
tions. The graph is successively refined with flows from the previous graph used
as initializations for brief flow simulations on each of the intermediate graphs.
Finally, the high-flow regions of the final refined graph are clustered together,
with regions without any flow forming the natural boundaries of the clusters.

In [18] we have a clustering method for learning a binomial mixture model
in RNA graphs, to process text represented as graphs in the field of bioin-
formatics. Textual data is analyzed also in [8], where the authors study the
relations of text with topics and communities. They propose a hierarchical
community model distinguishing community cores from affiliated members.
The method identifies potential cores as seeds of communities through rela-
tion analysis and eliminates the influence of initial parameters through an
attribute-based core merge process.

The authors of [7] present a clustering algorithm for reducing the visual
complexity of a large network by temporarily replacing a set of nodes in clusters
with abstract nodes. The approach defines a node similarity measure used to
build a similarity matrix. The linkage pattern of the graph is thus encoded
into the similarity matrix, and then one obtains the hierarchical abstraction of
densely linked subgraphs by applying the k-means algorithm [17] to the matrix.

Even though in a certain sense all the works described above consider simulta-
neously both community discovery and clustering, this is done only for practical
purposes. Here, we consider this mapping in a principled way, not to find a good
heuristic, but to overcome the differences between the two problems and using
existing techniques in one problem to solve the other.

3 Problem Definition

In this section we first define the problem of community discovery in complex
networks. Then, we define the problem of clustering transactional data. Finally,
we offer a mapping of the two, suggesting possible avenues for their equivalence.
Community Discovery (CD). Let G = (V,E) be a graph, where V is the set
of nodes in the graph, and E ⊂ V × V is the set of edges, or node pairs. In
CD, we start from the assumption that membership to E is not random, but it
follows an unknown function f . Function f governs the probability of two nodes
i and j to be connected. There are different ways to model f , each one of them
implying a different definition of what a community is [3].

In the following, we adopt the branch of community discovery assuming that
nodes have unobserved attributes from a set A, and the more attributes two
nodes have in common the more likely they will be part of the same commu-
nity1. If P = {p1, . . . pK}, with p ⊆ V , is a node partition extracted from the

1 Note that this is far from being an unproblematic definition [11], but it will do for
the scope of this paper.
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space of all possible partitions of V , then the aim of community discovery is to
find argmaxP γ(A,P ), where γ is a function comparing P to the actual node
attributes, for instance their mutual information. Note that, if for nodes i and j
ai = aj , then f(i, j) ∼ 1. Therefore, a good partitioning P of the nodes should
guarantee that P ∼ f . In other words, if p ∈ P and if i, j ∈ p, i.e., i and j are
part of the same community p, then (i, j) ∈ E with high likelihood.
Transactional Clustering Problem (T C). Moving to T C, let B =
{b1, . . . , bN} be a set of N baskets (transactions) and I = {i1, . . . , iD} a set
of D items. A basket bi is a subset of items such that ∅ ⊂ bi ⊆ I. The trans-
actional clustering problem consists in finding the partition P of B such that
argmaxPπ(B,P ), where π considers the average size of all baskets pairwise
intersection bi ∩ bj . Baskets bi, bj belong to the same basket partition p ∈ P if
they have a large item overlap. Thus, a good partition P puts together baskets
which all share the largest possible subset of items I.
Problems Equivalence. The problem definitions of community discovery CD
and transactional clustering T C share a similar structure, starting from different
input types. We propose a CD → T C mapping between the two problems and a
proper mechanism to transform the CD input into a T C input. The reasons why
we do not propose CD ↔ T C are discussed at the end of the section.

Let us consider a function Θ. Θ takes as input a graph G and a node i ∈ V ,
and it returns i and all j ∈ V such that (i, j) ∈ E. This is the list of direct
neighbors of i, or the set of nodes part of i’s ego-network. Ego-networks have
been successfully adopted to solve the CD problem [5]. In practice, the output of
Θ(G, i) for all i ∈ V can be seen as the input set B of baskets in the T C problem,
containing as items the nodes ids. Figure 1 shows the transformation of a network
into a set of transactions passing through an adjacency matrix. Indeed, a third
way to formulate this problem is the factorization of the adjacency matrix [20].

Fig. 1. Transformation of a network (left) into a set of transactions (one for each node,
right), passing through the adjacency matrix (middle) of the network.

Notice that, given Θ(G, i) = bi, then N = D = |V |, i.e., the number of
baskets is equivalent to the number of items in I and to the number of nodes in
G. Moreover, we have that if i ∈ V , then i ∈ I too, i.e., each node is an item
that can be contained in a basket bj . It follows that I = V .

If a partition P satisfies the objective of T C, then all bi and bj in the same
cluster p ∈ P share a lot of items from I. Since I = V and i, j ∈ V , then we can
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rewrite the previous sentence as: if P satisfies the objective of T C, this means
that i and j have a lot of common neighbors k, i.e., f(i, k) ∼ 1 and f(j, k) ∼ 1.
In turn, this means that it is likely that both ai = ak and aj = ak. From
the transitive property of equivalence, it follows that ai = aj , which implies
f(i, j) ∼ 1. Thus, P satisfies CD by grouping i and j together.

To sum up: if P satisfies the objective of T C, then it will also satisfy Θ(CD).
As a result of this transformation, we can use algorithms developed to solve the
transactional clustering problem to solve the community discovery problem.

We cannot apply Θ to B and map T C into CD because the concept of ego-
network makes no sense in a transactional dataset. To perform such mapping,
we need a function Ω = Θ−1 that is the functional inverse of Θ. However, while
Θ is a trivial operation on a graph [5], Ω is not the same on transactional data.

First, Θ has the property of automatically imposing I = V , which means that
a basket bi is a set of basket ids. This equivalence is broken in most transactional
datasets: I is not the set of basket ids. Therefore, if Ω transforms bi = {i1, i2, i3}
into a network, it will result in a bipartite one, with two node classes: B and I.
Bipartite community discovery is a different problem from traditional community
discovery [3]: for instance, for two nodes i, j ∈ B classified in the same p, f(i, j) =
0, because in a bipartite network B nodes connect exclusively to I nodes.

Even if we assume I = V , in a transactional dataset it is likely that any pair
of items will appear at least once in a basket. If I = V , a naive Ω will result
in a complete network, where E = V × V . In such scenario, algorithms solving
CD break. Ω would have to incorporate a criterion for discarding weak edges,
which is far from being a solved problem, where naive strategies of filtering low
weights fail [4]. For these reasons, we do not pursue the CD ↔ T C mapping, and
we focus on the Θ(CD) → T C mapping for the rest of the paper.

4 Methods

Here, we describe some state-of-the-art methods addressing the community dis-
covery and clustering of transactional data problems. We highlight the similari-
ties and differences between the two classes of algorithms.

4.1 Community Discovery Methods

Louvain [1] is a bottom-up community discovery method maximizing the mod-
ularity to discover the node partition. It detects which node-community assign-
ment would maximize the modularity, until there is no possible improvement.

LabProp [12] is a community detection method based on label propagation. It
follows a bottom-up strategy by initially assigning a different label to each node.
Then it iteratively re-labels each node with the label attached to the majority of
its neighbors. This process is repeated until no further re-labeling is performed.
In LabProp, there is not a measure to maximize, only a condition to respect.

Infomap [13] is a bottom-up community discovery approach which exploits
a random walker as a proxy of information flow and then tries to minimize the
map equation, which encodes the node identifiers initially assigned.
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4.2 Transactional Clustering Methods

Clope [22] uses a global profit function that tries to increase the intra-cluster
overlapping of transaction items by increasing the height-to-width ratio of the
cluster items frequency histogram. Clope scans the transactions and it evaluates
the profit in placing a basket in a cluster, or in creating a new one. The procedure
ends when no baskets are moved from a cluster to another. Clope requires a
repulsion parameter r that is used to control the tightness of the clusters.

Practical [2] is a parameter-free method which scans the data and assigns
each basket to an existing cluster or to a new one. The guiding quality function
is akin to the “tf-idf” score used in information retrieval. Practical moves the
baskets from a cluster to another while maximizing this function. It is able to
automatically identify the clusters in presence of rare items.

TX-Means [6] is a parameter-free algorithm which partitions transactional
data and extracts representative itemsets from each cluster. TX-Means is a top-
down approach: it starts from a unique set of transactions and then splits them
into partitions. The splitting principle follows the Bayesian Information Criteria
(BIC) [15] of the original cluster versus the two subclusters. TX-Means uses the
representative transactions to calculate the BIC. TX-Means peculiarities are (i)
the usage of a local criterion instead of the maximization of a global function,
and (ii) the usage of a centroid-based approach instead of a scanning schema.

4.3 On the Methods Equivalence

Here we look at the six methods and we classify them according to the following
dimensions: design, optimization, order, and features.
Design. This dimension refers to the way an algorithm explores the result space.
A bottom-up approach starts from all observations as independent clusters and
looks for the best way to aggregate them. A top-down approach starts with all
observations clustered in the same group and looks for the best splits. TX-Means
is the only top-down approach in this paper.
Optimization. This dimension rules the way the splits and merges are per-
formed. We distinguish between global and local criteria. A global criterion takes
the relationship between the entire dataset and the partition into account (Lou-
vain, Infomap, Practical, Clope), while a local criterion will only consider what is
only directly connected to the each entity (LabProp, TX-Means). Global criteria
can be further divided in several subclasses, of which we consider two. Practical
and Infomap score differently nodes/items depending whether they are com-
mon or rare. Clope and Louvain score weights considering the ratio between the
items/nodes in a cluster with respect to those outside the community/cluster.
Order. An order-independent method is deterministic: each run of the algorithm
will always return the same clusters. An order-dependent method will adopt
a randomized greedy strategy returning similar, but different, clusters across
different runs. Here, TX-Means is the only order-independent approach.
Features. Here we look at differences in input/output of the various methods.
Considering the input, all the methods are parameter-free with the exception of



348 R. Guidotti and M. Coscia

Clope, which requires the repulsion parameter r. We set r = 1.5 by default, as
it empirically shows good performances on all the different datasets analyzed.
As for the output, Infomap and TX-Means return a hierarchical structure. TX-
Means also returns a representative for each community/cluster.

5 Experiments

In this section we solve the community discovery problem CD on real datasets
with ground truth. We want to compare the performance differences between
community discovery methods and transactional clustering algorithms.

5.1 Datasets

Our data comes from SNAP2. We chose three small and three large net-
works. Table 1 reports a description of the networks and their ground truth
communities.

Table 1. Networks and communities descriptions.

Network Nodes Edges Density Avg. clus. coef. Communities Avg. com. size

karate 34 78 0.139 0.571 2 17.0

dolphins 62 159 0.084 0.259 2 31.0

football 115 613 0.094 0.403 12 9.58

amazon 16, 716 48, 739 3.5e−4 0.649 5, 000 13.49

dblp 93, 432 335, 520 7.7e−5 0.715 5, 000 22.45

youtube 39, 841 224, 235 2.8e−4 0.197 5, 000 14.59

The karate network is the social network between members of a karate club
at a US university. The dolphins network is a network of frequent associations
between dolphins living off New Zealand. The football network is the network
of American football games between Division IA colleges during Fall 2000. In
the amazon network we have a link between frequently co-purchased products.
The Amazon product category defines the ground-truth community. The dblp
network is a co-authorship network where two authors are connected if they
published at least one paper together. Authors who published to a certain jour-
nal/conference form a community. Finally, in the youtube social network users
form friendship with each other and can create groups. The user-defined groups
are ground-truth communities. For these three datasets we consider the top 5,000
communities with highest quality [21]. Nodes which are not part of any of these
5,000 communities are dropped from the network.

2 https://snap.stanford.edu/data/#communities.

https://snap.stanford.edu/data/#communities
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5.2 Evaluation Measures

To evaluate the clustering quality we quantify the similarity between clusters
and ground truth with the Normalized Mutual Information (NMI) [19]. NMI
is preferred over purity because (i) it is more sensitive to the change in the
clustering results, and (ii) it takes into account unbalanced distributions and
does not necessarily improve when the number of clusters increases (as purity
does). Given two sets of clusters C={c1 . . . ck} and G={g1 . . . gk′}: NMI(C,G) =

I(C,G)
0.5∗H(C)+0.5∗H(G) ∈ [0, 1], where I(C,G)=

∑
k

∑
j

( |ck∩gj |
N

)
log

(
N |ck∩gj |
|ck||gj |

)
is the

mutual information [19], and H(C) = −
∑

k

(
|ck|
N

)
log

(
|ck|
N

)
is the Shannon

entropy [16]. Aligned partitions have a NMI ∼1, misaligned partitions ∼0.
We also evaluate the deviation δk=|C|−|G| between the real number of clus-

ters and the number of clusters detected: δk∼0 when the right number of cluster
is detected, δk>0 if more clusters than real ones are detected, δk<0 otherwise.

5.3 Results

We report in Table 2 the results of the experiments performed by solving the
community discovery problem both for community discovery algorithms and also
for transactional clustering algorithms, after having transformed the network
according to the procedure described in Sect. 3.

Table 2. Experiments evaluation through NMI and δk. Best performer for each dataset
and each measure highlighted in bold. Ties are not broken.

Network Infomap Louvain LabProp TX-Means Clope Practical

NMI δk NMI δk NMI δk NMI δk NMI δk NMI δk

karate 0.71 1 0.27 3 0.23 2 0.73 2 0.43 3 0.77 2

dolphins 0.57 4 0.04 4 0.01 2 0.53 6 0.52 10 0.77 2

football 0.94 0 0.20 −1 0.22 −1 0.87 −2 0.91 3 0.88 8

amazon 0.87 −3,893 0.50 −3,877 0.54 −3,375 0.68 370 0.84 −1,583 0.68 −2,162

dblp 0.64 −4,240 0.59 −4,417 0.75 4,239 0.60 −563 0.86 −1,390 0.88 −1,233

youtube 0.39 −4,349 0.27 −4,037 0.32 −3,756 0.38 −408 0.72 12,024 0.33 3,654

First of all, we underline the good performance of transactional clustering
algorithms. In particular, with respect to the deviation δk it seems that clustering
algorithms are better than community discovery methods in approximating the
right number of communities for large networks.

Secondly, we observe that Clope is resulting to be one of the best performer in
general in terms of NMI, but in the case of the youtube dataset it overestimates
the number of communities, producing more than the double of the number of the
real communities. As already discussed in [6], TX-Means is the best algorithm
in keeping low the deviation δk, at least in larger networks.
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Finally, we notice how the clustering algorithms are able to maintain good
NMI performance both for small and large dataset with very different levels
of density, nodes overlapping and average community size while some commu-
nity discovery methods have very poor performance in the small networks. In
summary, there is not clear comparative advantages in community discovery for
community discovery methods, and more often than not a transactional cluster-
ing algorithm will be the best performer.

To conclude the section, we depict in Fig. 2 the results of a community discov-
ery algorithm (Infomap) and a transactional clustering one (TX-Means). We can
see that the results are quantitatively the same, as the NMI values are almost
equivalent. However, Infomap and TX-Means have different points of failure,
which might make one more suitable in some scenarios than the other.

Fig. 2. The karate results: ground truth on the left, community discovery algorithm
(Infomap, center), transactional clustering algorithm (TX-Means, right).

TX-Means returns a higher number of communities than the ground truth.
However, it perfectly characterizes the boundary between the ground truth com-
munities, and the additional ones are simply sub communities, hierarchically
contained in the main two. On the other hand, Infomap is closer in number of
communities, by returning only one of the three sub communities. However, its
community boundary detection is worse than TX-Means: node 10 should have
been classified on the leftmost community instead of in the rightmost one.

Finally, in Fig. 3 we highlight another common characteristic of TX-Means
and Infomap: their ability to enhance which are the core nodes of each commu-
nity. Infomap considers as core nodes those with the highest page rank score,
while for TX-Means we assume the core nodes are those in the representative

Fig. 3. The karate communities core nodes using a community discovery algorithm
(Infomap, left) and a transactional clustering algorithm (TX-Means, right).
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transactions. Figure 3 shows how TX-Means (right) is more “conservative” than
Infomap (left): TX-Means mainly returns cliques of nodes delineating the back-
bone of the communities, Infomap mainly returns the hubs of the communities.

6 Conclusion

In this paper we have considered the problems of community discovery and of
clustering transactional data and we have provided a formal mechanism to map
the former into the latter. We have illustrated the main methodological simi-
larities and differences among existing community discovery and transactional
clustering approaches. Through some experiments, we have showed that such
transformation empowers transactional clustering algorithms to perform as well
as, or sometimes better than, specialized community discovery algorithms.

This paper can be the starting point for several interesting research direc-
tions. A very promising one is the extension of our mapping to show that commu-
nity discovery ↔ clustering. To add the left equivalence, we need a methodology
to clean noise from transactional data. One promising approach to do it is to
use algorithms developed for solving the network backboning problem [4].
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