
OOPP: Tame the Design of Simple
Object-Oriented Applications

with Graphical Blocks

Alberto Ferrari, Gianfranco Lombardo, Monica Mordonini, Agostino Poggi,
and Michele Tomaiuolo(B)

Dipartimento di Ingegneria e Architettura, Università di Parma, Parma, Italy
{alberto.ferrari,gianfranco.lombardo,monica.mordonini,

agostino.poggi,michele.tomaiuolo}@unipr.it

Abstract. Many and varied experiences are being reported, about the
first introduction to programming for young students and neophytes.
However, tools and methodologies are needed also for a more compre-
hensive learning process, which requires to design the architecture of any
small but functioning application. We propose a new environment, based
on the use of graphical blocks, for designing some object-oriented appli-
cations. It merges the positive features of block-programming with the
object-oriented paradigm in a graphical educational environment. It is
developed as a tool for supporting the objects-early approach. The whole
methodology is targeted at high school students, university freshmen and
unemployed people who are motivated to learn to code professionally. In
these cases, where we have firstly experimented this approach, the con-
cepts of object-oriented programming (OOP) cannot be relegated to a
secondary role, but they have to be introduced early and presented in
their most intuitive form.

Keywords: Computer programming · Block programming
Object-oriented programming · Education

1 Introduction

Most recent reports, regarding the introduction to coding, target a young or a
very young audience [4,17,20]. A feature shared by a number of these projects
is the use of puzzle programming for simplifying the very first approach to com-
puter programming, trying to eliminate the syntactic burden.

Our work is oriented in particular to programming courses for high school
students and university freshmen. Moreover, there is a growing social pressure
to reorient unemployed people towards computer programming, through voca-
tional training courses. In all these cases, the typical syntactic difficulties related
with coding are soon accompanied by some challenges of application design. In
fact, courses for professional computer programming cannot procrastinate the
concepts of object orientation, which become harder to learn at a later stage.
Thus, we are working to define an approach which can get the best of both the
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

B. Guidi et al. (Eds.): GOODTECHS 2017, LNICST 233, pp. 279–288, 2018.

https://doi.org/10.1007/978-3-319-76111-4_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76111-4_28&domain=pdf


280 A. Ferrari et al.

worlds of object-oriented programming and puzzle programming. In this app-
roach, which we call Object-Oriented Puzzle Programming (OOPP), we propose a
tool for the design and development of object-oriented applications, adopting the
objects-early methodology [15]. Applications are realized by connecting visual
objects representing the fundamental elements of object-oriented programming,
in a similar manner to puzzle programming. The user/programmer realizes a
puzzle of connected blocks, which represents the object-oriented structure of the
application.

The rest of the article is organized in the following way. Section 2 presents the
current discussion and the situation about the introduction to coding, especially
for high school students and young workers. Section 3 discusses the methodology
and tool we propose for Object Oriented Puzzle Programming. Section 4 presents
an evaluation of the tool by a class of post-high school students. Finally, some
concluding remarks are presented.

2 Related Works

The whole idea of Computational Thinking was popularized by Wing [21], as “a
way of solving problems, designing systems, and understanding human behavior
that draws on concepts fundamental to computer science.” Apart from coding,
other aspects and concepts are fundamental to Computational Thinking [6,7],
including abstraction and modeling.

The founding idea of block programming, which characterize a number of
projects [4,16,22] related to the introduction to Computational Thinking, is to
provide a graphical interface with blocks of diverse types. The user/programmer
can combine the blocks in various ways through drag and drop operations, in such
a way to form a puzzle representing the solution to a given problem. The blocks
represent the basic elements of the language and they are differentiated by form
and color, to ease their identification and usage. The difficulties, faced by novices
which approach programming for the first time [1,3,9], are essentially of two
different kinds: on the one hand it is necessary to formalize the ideas about the
solution in the form of an algorithm, on the other hand it is necessary to adhere to
the rigorous syntax of a programming language. Block programming eliminates
the possibility to introduce syntactic errors and allows users to focus entirely
on the logics of assigned problems and their solutions. In fact, the composition
of blocks is rigidly constrained by existing slots, which represent the syntactic
constraints of the language.

Although most educational projects and experiences proposing a block pro-
gramming approach are oriented to a very young audience, projects directed
toward high school students are beginning to appear. In [19] some points of
strength and weakness are analyzed, as they are perceived by high school stu-
dents which are allowed to move from a textual programming environment to a
block-based one.

In the last decades, the object-oriented approach has become one of the most
adopted programming paradigm [12,13]. It is popular both at the educational



Object Oriented Puzzle Programming 281

and professional level. This fact is largely accepted, but there are still a lot of
debates focusing on the time in which OOP is best introduced in CS1 courses.
The debate about the “paradigm shift” is still actual, but in the last years in
many introductory university courses there has been a move from the procedural
paradigm to the object-oriented one. A comparative analysis [18] shows that
student who have started their curriculum with an object-first approach obtain
better results, when they have to design software for solving complex problems.
Other studies [2,5,10] present experiences in which the object-first approach has
effectively led to great improvements. They show that students obtain better
overall results and the failure rate is drastically reduced. An additional advantage
of the object-first approach is to facilitate the comprehension of the object-
oriented paradigm, while the shift from a paradigm to another is quite difficult
for those who started studying the discipline with an imperative/procedural
approach. In [12] it is argued that “it is the switch that is difficult, not object-
orientation.” If the main difficulty lies in the paradigm-shift, from the procedural
paradigm to the object-oriented one, then the objects-early approach has the
lowest difficulty level, as can be seen in many CS1 courses.

In introductory courses based on the object-early approach, professional tools
can be too complex, especially for newbies. Among tools tailored for educational
purposes, instead, BlueJ1 provides a useful IDE for object-early didactics. How-
ever, unlike the tool we are going to present, there is little functionality for
designing the internal structure of the classes of an object-oriented application.

3 Object Oriented Puzzle Programming

OOPP is an integrated development environment primarily designed for teach-
ing purposes in order to introduce object-oriented design and programming in
a simple and intuitive way. OOPP is a tool that allows a user/programmer to
design and create simple object-oriented applications by block composition, and
then automatically generate the target code that will be the frame of the appli-
cation to be realized. It includes a workspace that allows you to define, in a
visual way, “blocks” of code, with related methods, constructors and attributes,
that will then automatically generate the corresponding target code.

In Blockly2, we have developed a set of high-level blocks that can be used for
object-oriented programming. The visual environment is developed entirely in
JavaScript and therefore it can be executed within any web browser. This fact
further simplifies the use of the application, that does not require any specific
software installation. The environment is characterized by three main elements
(Fig. 1):

1. a toolbox which contains the available blocks, organized by their type;
2. a work space where to place and link the blocks to form a puzzle/program;
3. a text box to display the corresponding generated code automatically, by

converting each block of the puzzle into a sequence of target instructions.

1 https://www.bluej.org/.
2 https://developers.google.com/blockly/.

https://www.bluej.org/
https://developers.google.com/blockly/


282 A. Ferrari et al.

Fig. 1. Object-Oriented Puzzle Programming environment.

3.1 The Blockly Framework

Blockly includes some standard categories of blocks: logical blocks, cycles, math
operators, lists, variables, and so on. Starting from these categories, we have
created additional blocks for object-oriented programming: interfaces, classes,
constructors, methods, and parameters. The new blocks are shaped to allow
only connections that respect the syntactic constraints. Defining a new class or
interface makes a new block in the toolbox instantly available, which is the new
type of data that you can then use in developing the application. To keep the
environment simple and intuitive, as much as possible, only the main features
of object-oriented programming have been introduced. For example, it is not
possible to explicitly define inner classes and abstract classes. With the present
features, it is possible to put into practice the fundamental concepts of object-
oriented programming such as encapsulation, inheritance, and polymorphism.
Our didactic experience shows us that more advanced features, which can be
found for example in the UML language specifications, are neither necessary
nor desirable in such an introductory environment. OOPP is thought to be a
tool for the initial stages of a didactic path for object-oriented design. Hence,
it is unsuitable for complex applications. As the same authors of Blockly say:
“Blockly is currently designed for creating relatively small scripts... Please do
not attempt to maintain the Linux kernel using Blockly.” – Neil Fraser - Google.

Blockly is defined as “a library for building visual programming editors”, that
is a tool for application developers, and many are in fact the educational appli-
cations that use it as a starting point for development. It provides a workspace
that allows users (novice programmers) to write programs by linking the various
blocks. Each visual object (block) actually represents a code object. Blockly also
allows to create new blocks. Then, these new blocks can be used in a variety of
applications. In a sense, creating a set of new blocks corresponds to the creation
of a new language with its new syntax and semantics. The syntax is defined by



Object Oriented Puzzle Programming 283

the structure of the blocks, their color, their shape and the possible connections.
In practice, Blockly allows to write only syntactically correct programs, with
textual code replaced by visual blocks. The Block Factory (Fig. 2) is a graphi-
cal tool of Blockly, which can be used to start creating new blocks, by defining
their main features through a simple and intuitive interface. Block semantics is
then defined by providing the corresponding code for each of them, which can be
written in any programming language. The double representation of the program
(Fig. 1), both as a puzzle and as a textual code, is very interesting and stimulat-
ing in an educational setting. In fact, the novice programmer can compare the
two versions.

Fig. 2. Blockly Block factory.

3.2 OOPP: The Working Environment

OOPP is a web application developed in JavaScript and entirely executed within
a browser. Its graphical interface provides a toolbox that presents the various
categories of blocks that can be dragged and linked together to form a puzzle in
a work area. Moreover, it provides a context menu that allows the activation of
all the features inherent to the current project and necessary for the generation
of code. A puzzle representing the set of interfaces and classes of an application
is defined by a set of blocks of various types. In particular, we have extended
Blockly with object-oriented blocks. Besides the blocks that define interfaces and
classes, there are other blocks for attributes, constructors, methods, parameters,
data types, etc. An entire OOPP project can be saved into a file, and then loaded
again.

OOPP has been designed with the main goal of easing its use to people
with limited or no knowledge on object-oriented programming. Therefore, the
information to manage during the definition of a puzzle has been minimized.
In each particular phase of the definition, it shows only the components that



284 A. Ferrari et al.

Fig. 3. A simple class and part of its internal representation.

are considered necessary. For example, inheritance is not proposed upfront when
starting to define a new class (Fig. 3).

When an application involves a large number of blocks, usually it is necessary
to switch from a global view, which allows the analysis of the structure of the
application, to a specific view, which allows the analysis of the relationships
among a subset of the blocks of the application, or the analysis, modification and
extension of a single block. To do it, OOPP allows the visualization at different
zoom levels, providing a “collapse” and an “expand” command to automatically
minimize and recover to the original size one or all the blocks of the application.
For classes and interfaces, it is possible to mark them as provided by an external
library; this way, only an import instruction is generated.

3.3 Java-Based Projects

The first target language supported by OOPP is Java [8]. Each time that the
puzzle is modified in any way, the corresponding Java code is automatically
generated anew and shown. This real-time update of the code has the aim to
highlight the syntactic features of the target language. Students generally appre-
ciate it a lot, since it allows them to compare the generated code with the block
structure, which appears clearer. However, the automatic generation of code
can be temporarily disabled. This option is suggested to avoid slowing down
the application, in case of particularly complex projects, or while loading large
libraries.

The translation of blocks into code is specified in JavaScript files, created
for the peculiar blocks of this project, about interfaces, classes, and operational
Java code. The constraints, which limit the possible connections among blocks,
eliminate most syntactic errors. However, more checks have been implemented,
to avoid other common syntactic and semantic errors. This aspect is very impor-
tant, since the application has an educational scope; as it is documented also in
other studies [11], syntactic errors and other issues, related to imprecisely typed
code, are one of the most important cause of demoralization and discouragement
for neophytes of coding. As an example, we cite here a quite classical error, which



Object Oriented Puzzle Programming 285

is not merely syntactic, in this kind of projects: a method is not implemented in
a class, even if some of its interfaces specify it.

As we have seen, using mutators it is possible to organize classes and inter-
faces in a complex hierarchy. For example, in an application it is possible to
define a class and associate it with a certain interface. Figure 4 shows a puzzle
representing this example: class X implements interface Y , without providing an
implementation of its method Z. From the point of view of blocks, no constraints
are violated. However, while generating the corresponding Java code, the process
cannot complete and an explicative message for the error is shown. The analy-
sis is performed by collecting all signatures of methods defined in implemented
interfaces, and confronting them with methods defined in the class itself; only
in the case they correspond, the Java code is generated.

Fig. 4. A simple class and relative interface.

In association with the development environment, an extension has been
developed, which allows users to import class and interfaces with all their fea-
tures. Analyzing a Jar file, the tool can generate an OOPP project file, contain-
ing blocks corresponding to all defined classes and interfaces. Various options
are available, for example to let blocks appear in “collapsed” mode when loaded,
or to set classes and interfaces as “lib”, and thus not associated with operational
code, but only generating import statements. The application uses Java reflec-
tion and it can generate a new OOPP project, even when Java source files are
not available. Since it is mainly intended as a didactic tool, the import extension
does not handle the most complicated settings, e.g. references to external classes,
etc.

4 Evaluation

The use of OOPP has been experimented in an introductory CS course, in
a school for helping young unemployed students to qualify for developer jobs
(an Italian “Corso di Alta Formazione”). The course is organized along the
principles of the objects-early methodology, following few introductory lessons
about imperative programming. The main objective of the course is to intro-
duce the basic concepts of object-oriented programming and object-oriented
software application design, through the Java language. More than 60% of stu-
dents (Fig. 5), before the course, had no skills or competences about computer



286 A. Ferrari et al.

programming, at all. An additional 16,7% had not developed any object-oriented
application before, though knowing the paradigm from the theoretical point of
view.

Fig. 5. Competences about computer programming.

In the very first part of the course, lab activities have been characterised by
the use of objects of predefined classes, and their reciprocal interaction. This
educational approach is inspired by the ideas presented by Kölling [14] and by
the BlueJ development environment.

At the moment of designing and realizing classes, and when introducing the
concepts of inheritance and polymorphism, students have had the choice to use
OOPP, or a more traditional environment. In the first phase, all students have
experimented the use of OOPP to design their application and generate the
structure of classes for their applications.

Almost all students have appreciated the usability of the OOPP environ-
ment; also among neophytes of object-oriented programming, more than 90%
has evaluated OOPP as simple to use (Fig. 6). It has been found useful, at least
for designing classes for various proposed problems, by 67% of students; 28% of
them designed classes for all problems using OOPP environment. In particular,
students have reported that, operating through the composition of blocks, it is
easier both (i) to define the various needed elements (fields, methods, construc-
tors) of a class, and (ii) to understand the syntactic structures of the generated
code, which is available in real-time during the composition of the puzzle.

Fig. 6. Usability and use of OOPP.



Object Oriented Puzzle Programming 287

4.1 Future Developments

The system functionalities have been experimented successfully, for the part
related to design, i.e., it allows users to define the high level class model of a
Java application in a simple and intuitive way.

A possible development regards the possibility to generate code in more pro-
gramming languages, implementing the object-oriented paradigm. In particular,
one underway extension regards the Python language, in the light of its growing
usage in educational contexts. Apart from minor adjustments to blocks, different
management of interfaces and support for multiple inheritance, it is necessary
to redefine block-code conversions. Anyway, the application structure remains
almost the same.

Though not being the initial scope of this project, an extension can also
be thought, for allowing a user to develop a complete application, all inside a
unified OOPP project. For constructors and methods, it is necessary to provide
an implementation, using the operational blocks already available with other
systems based on Blockly, together with specific blocks for instantiation and
usage of objects. In this case, the comprehensive puzzle obviously becomes larger,
or much larger. Thus, the use of such operational blocks inside a unified OOPP
project is suggested only for very simple applications. However, the zoom and
collapse functionalities can help to manage a workbench with plenty of blocks.

5 Conclusions

In this paper, we have presented OOPP, a project that merges puzzle program-
ming and object-oriented paradigm in the form of a didactic tool to support the
objects-early methodology for introducing the object-oriented paradigm, for high
school students and university freshmen. OOPP is a web application which pro-
vides blocks for the basic elements of object-oriented programming, i.e., classes,
attributes and methods. A user/programmer can create a puzzle as a collection
of connected graphical programming blocks. The puzzle could then be automat-
ically translated to Java or any other supported language. In fact, OOPP is not
tied up to a specific target language. We think that our project will be useful
in CS1 courses, but also in vocational courses, as a starting environment for
modeling and designing classes. Automatic generation of code from a puzzle of
blocks to diverse object-oriented languages is a valid help to compare syntactical
differences from a unique starting project.

References

1. AICA: Informatica nei licei nel contesto della riforma della scuola, documenti di
Mondo Digitale (2003)

2. Bennedsen, J., Schulte, C.: What does objects-first mean?: an international study
of teachers’ perceptions of objects-first. In: Proceedings of the Seventh Baltic Sea
Conference on Computing Education Research, vol. 88, pp. 21–29. Australian Com-
puter Society, Inc. (2007)



288 A. Ferrari et al.

3. CINI, GII, GRIN: Manifesto sull’informatica nella riforma della scuola supe-
riore. http://www.grin-informatica.it/opencms/export/sites/default/grin/files/
manifesto.pdf

4. Cooper, S., Dann, W., Pausch, R.: Alice: a 3-D tool for introductory programming
concepts. J. Comput. Sci. Coll. 15(5), 107–116 (2000)

5. Cooper, S., Dann, W., Pausch, R.: Teaching objects-first in introductory computer
science. ACM SIGCSE Bull. 35(1), 191–195 (2003)

6. Denning, P.J.: The profession of it beyond computational thinking. Commun. ACM
52(6), 28–30 (2009)

7. Denning, P.J., Comer, D.E., Gries, D., Mulder, M.C., Tucker, A., Turner, A.J.,
Young, P.R.: Computing as a discipline. Computer 22(2), 63–70 (1989)

8. Ferrari, A., Poggi, A., Tomaiuolo, M.: Object oriented puzzle programming. In:
Didattica Informatica-Didamatica 2016, pp. 1–10 (2016)

9. Gander, W., Petit, A., Berry, G., Demo, B., Vahrenhold, J., McGettrick, A.,
Boyle, R., Mendelson, A., Stephenson, C., Ghezzi, C., et al.: Informatics educa-
tion: Europe cannot afford to miss the boat. ACM (2013). http://europe.acm.org/
iereport/ie.html

10. Gries, D.: A principled approach to teaching OO first. SIGCSE Bull. 40(1), 31–35
(2008). http://doi.acm.org/10.1145/1352322.1352149

11. Kelleher, C., Pausch, R.: Lowering the barriers to programming: a taxonomy of
programming environments and languages for novice programmers. ACM Comput.
Surv. (CSUR) 37(2), 83–137 (2005)

12. Kölling, M.: The problem of teaching object-oriented programming, part 1: lan-
guages. J. Object-Oriented Program. 11(8), 8–15 (1999)

13. Kölling, M.: The problem of teaching object-oriented programming, part 2: envi-
ronments. J. Object-Oriented Program. 11(9), 6–12 (1999)

14. Kölling, M.: Using BlueJ to introduce programming. In: Bennedsen, J., Caspersen,
M.E., Kölling, M. (eds.) Reflections on the Teaching of Programming: Methods
and Implementations. LNCS, vol. 4821, pp. 98–115. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-77934-6 9

15. Lister, R., Berglund, A., Clear, T., Bergin, J., Garvin-Doxas, K., Hanks, B.,
Hitchner, L., Luxton-Reilly, A., Sanders, K., Schulte, C., Whalley, J.L.: Research
perspectives on the objects-early debate. SIGCSE Bull. 38(4), 146–165 (2006).
http://doi.acm.org/10.1145/1189136.1189183

16. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Bren-
nan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., et al.: Scratch:
programming for all. Commun. ACM 52(11), 60–67 (2009)

17. Upton, E., Halfacree, G.: Raspberry Pi User Guide. Wiley, New York (2014)
18. Vilner, T., Zur, E., Gal-Ezer, J.: Fundamental concepts of CS1: procedural vs.

object oriented paradigm-a case study. ACM SIGCSE Bull. 39(3), 171–175 (2007)
19. Weintrop, D., Wilensky, U.: To block or not to block, that is the question: students’

perceptions of blocks-based programming. In: Proceedings of the 14th International
Conference on Interaction Design and Children, pp. 199–208. ACM (2015)

20. Wilson, C.: Hour of code: we can solve the diversity problem in computer science.
ACM Inroads 5(4), 22–22 (2014)

21. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)
22. Wolber, D., Abelson, H., Spertus, E., Looney, L.: App Inventor. O’Reilly Media

Inc., Sebastopol (2011)

http://www.grin-informatica.it/opencms/export/sites/default/grin/files/manifesto.pdf
http://www.grin-informatica.it/opencms/export/sites/default/grin/files/manifesto.pdf
http://europe.acm.org/iereport/ie.html
http://europe.acm.org/iereport/ie.html
http://doi.acm.org/10.1145/1352322.1352149
https://doi.org/10.1007/978-3-540-77934-6_9
http://doi.acm.org/10.1145/1189136.1189183

	OOPP: Tame the Design of Simple Object-Oriented Applications with Graphical Blocks
	1 Introduction
	2 Related Works
	3 Object Oriented Puzzle Programming
	3.1 The Blockly Framework
	3.2 OOPP: The Working Environment
	3.3 Java-Based Projects

	4 Evaluation
	4.1 Future Developments

	5 Conclusions
	References




