
GHio-Ca: An Android Application for
Automatic Image Classification

Davide Polonio, Federico Tavella, Marco Zanella, and Armir Bujari(B)

Department of Mathematics, University of Padua, Padua, Italy
{davide.polonio,federico.tavella,marco.zanella.8}@studenti.unipd.it,

abujari@math.unipd.it

Abstract. Online social networks (OSN) have revolutionized many
aspects of our daily lives and have become the predominant platform
where content is consumed and produced. This trend coupled with recent
advances in the field of Artificial Intelligence (AI) have paved the way to
many interesting features, enriching user experience in these social plat-
forms. Photo sharing and tagging is an important activity contributing
to the social media data ecosystem. These data once labeled constitute
a fruitful input for the system which is exploited to better the services of
interest to the user. However, these labeling activity is imperfect and user
subjective, hence prone to errors inherent to the process. In this paper,
we present the design and the analysis of an Android app (namely GHio-
Ca), an automatic photo tagging service relying on state-of-the-art image
recognition APIs. The application is presented to the user as a camera
app used to share pictures on social networks while relying on exter-
nal services to automatically retrieve tags best representing the picture
theme. Along with the system description we present a user evaluation
involving 30 subjects.

Keywords: Online social networks · Social media sensing
Computer vision · Android · Image recognition

1 Introduction

Social media has become a ubiquitous part of everyday life. The amount of data
being published through these services contains valuable potential information
which can be exploited by algorithms and put to good use in order to provide
new and innovative services to the users [1–3]. However, extracting the semantics
from the data is generally a hard problem and user provided metadata could aid
to better contextualize and infer information.

One such category of data are photos published on social networks which are
generally associated with a description and some hashtags labeling them. The
latter could be personal words that a person associates to a certain photo (e.g.
feelings, person names, places) but they could also be used in order to describe
the content of the photo. All these pieces of information can be really useful
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

B. Guidi et al. (Eds.): GOODTECHS 2017, LNICST 233, pp. 248–257, 2018.

https://doi.org/10.1007/978-3-319-76111-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76111-4_25&domain=pdf


GHio-Ca 249

to train algorithms and to create datasets used in order to recognize images: in
fact, these data, which are freely available, are posted by people that manually
label and describe a specific photo.

However, user provided hashtags are often imprecise, subjective [4]. As an
alternative one could rely on image recognition services to automatically tag
photos prior to sharing on social network sites. This has the potential benefit of
employing unbiased metadata, providing a more useful feedback to the services
that rely on them. In specific, image recognition services process an image and
return a set of labels associated to that picture. Results vary in precision depend-
ing on the photo quality, subject and also on the algorithm being employed.

In this context, we propose GHio-Ca (Giving Hashtags In Order to Classify
Automatically), an Android application allowing people to take photos or choose
pictures which are automatically processed by some image recognition service.
Our application was designed with quality of service and usability requirements
in mind and its motivation is twofold: (i) automatically and transparently pro-
vide useful and meaningful information aiding the user and (ii) create an unbi-
ased image dataset used to train image recognition algorithms. In specifics, in
order to achieve our purpose, we rely on the following image recognition ser-
vices: (a) Computer Vision API by Microsoft Azure [5], (b) Visual Recognition
by IBM Watson [6], (c) Google Reverse Image Search [7] and (e) Imagga [8]. To
asses our proposal, we undertook a user study evaluating the different services
in terms of result accuracy and user satisfaction.

This paper is organized as follows: Sect. 2 provides some background infor-
mation on the field of artificial intelligence and image processing along with
an overview of the current state of the art of computer vision applications.
Section 3 describes the application design and implementation, while Sect. 4 pro-
vides a comparison analysis of the different image recognition APIs we exploited.
Finally, in Sect. 5 conclusions are drawn.

2 Background and Related Work

Machine learning is the field of artificial intelligence responsible for learning
from data without being explicitly programmed to do so. In this way, the results
provided by the algorithm do not depend on how data is processed, but rather
on the data itself. Broadly there are two methods for training an algorithm on
a dataset: supervised and unsupervised learning. In supervised learning, each
data in the dataset is associated to a label. Consequently, we are able to train
the algorithm based on examples and the objective is to predict the label for
future data. In unsupervised learning, there is no such association. Thus, to
determinate if two examples are referring to the same result, one relies on a
similarity measure (e.g. if we represent data using vectors, one possible measure
of similarity is the cross product).

Pattern Matching is the branch of machine learning responsible for detecting
patterns and regularities in data. Typically, it is implemented through super-
vised learning approach: the dataset is composed by examples with an associ-
ated label. In this way, the algorithm learns which are the features of a specific



250 D. Polonio et al.

pattern. One of the most used method in machine learning for image classifica-
tion is Deep learning : this technique uses an Artificial Neural Network (ANN )
- which is a Neural Network (NN ) composed by more than one hidden layer,
as shown in Fig. 1 - in order to classify an image, based on similarity mea-
sures (unsupervised) or training examples (supervised). Typically, NNs use a
backpropagation algorithm, composed of two phases: feed forward and backward
propagation. First, the image is decomposed in a vector-like representation and
at a second stage, during feed forward phase, the vector is fed as input to the NN
and it is computed. Finally, during back propagation, the result of feed forward
phase is compared to the real label; in case of mismatch, the wrong parts are
backpropagated into the NN in order to compensate the wrong implementation.
This process is repeated for each entry in the dataset.

Fig. 1. Architecture of a Neural Network

Computer Vision is a branch of machine learning which is rapidly increasing,
finding a fertile ground in many applications. One of the most obvious is image
processing, which involves applying changes to an image using an algorithm.
In [9], researchers developed a DNN used to remove rain drops from images.
As in this case, many other changes can be applied to images: increasing size
with minimum quality loss, removing objects, improving image resolution, and
so on. However, computer vision contains also another kind of application: image
detection. Using NNs, algorithms are able to detect pedestrians in images [11]
(which is fundamental for self-driving cars) and also detect anomalous behaviors
in crowds [10]. Being able to detect shapes (e.g. a person) and irregular patterns
can also help in terrorism detection and prevention.

On the other hand, image classification has two main problems: time and
cost. This task can be performed by a machine but, in order to do so, the
algorithm needs to be previously trained with a supervised learning approach.
Consequently, someone has to label different images. This task is typically done
by people who are paid to execute it. Differently from machines, humans are
far from fast to perform image labeling; consequently, in order to obtain a large



GHio-Ca 251

dataset, a lot of time is required. As in other cases in Computer Science, paral-
lelization can improve the performance of this job: if a person needs two seconds
to label an image, one thousand people can provide one thousand labeled images
in the same amount of time. One good example of this principle is the database
ImageNet [13], “a large-scale ontology of images built upon the backbone of the
WordNet structure [14]. This database can be used as benchmark and improve-
ment tool for computer vision algorithms. However, in our opinion even this last
case lacks of two fundamental properties: usability and zero-day learning. Obvi-
ously, accessing to such database in order to retrieve information and perform
pattern recognition is not a task which can be performed by a common user
(i.e. a person who does not have any skill in computer science and program-
ming) without a proper user interface. Furthermore, this database needs to be
populated in the first place: this task requires paying people to do so.

In this context, our application aims to tackle these issues, providing a usable
interface for image recognition by exploiting smartphones to build a database
from third-party services. At the same time, the application is useful to end-users,
providing an automatic hashtag feature easily integrated with social network
platforms.

3 GHio-Ca

In this section we provide a description of some salient features of our application,
mainly concerning architectural and implementation choices made during the
development process.

3.1 Architectural Design

GHio-Ca is an Android application that provides a user the possibility to auto-
matically label photos and share them through social network sites. The applica-
tion embeds some camera features which allow the capture of photos which are
successively uploaded in order to be processed by an image recognition engine.
Also, it allows the user to pick a photo from the local storage and start the
classification process on it. Regarding the API version compliance, we imposed
API level 21 (Android Lollipop) as a minimum requirement. The source code of
the project can be found at [15].

In Fig. 2 are shown the main views present in the app ranging from the
camera acquisition, configuration and results view. From an architectural design
viewpoint, GHio-Ca is composed by three loosely coupled modules (Fig. 3): (i)
the first one manages network connectivity, uploads the photo to the server and
makes requests to different services in order to make image recognition or the
translation of certain pieces of text; (ii) the camera module, that manages the
photo capturing process and storage on the devices, and (iii) the module that
glues all the pieces together. These modules are maintained as loose coupled as
possible, in order to make it easier to change the used services without mak-
ing important changes to the overall application (e.g. changing the process of
capturing a photo without modifying the networking module).



252 D. Polonio et al.

Fig. 2. Screenshot taken from the application

Fig. 3. GHio-Ca architecture

All communication with external services is done through a background
worker thread listening from requests coming from the UI part. Whenever a
communication error with an external service occurs, the user is presented with
an error notifying the undesirable outcome. When no errors occur the results are
skimmed based on the probability that a word (or bag of words) could be corre-
lated to the user picture. Depending on the capabilities offered by the external
service the application relies on, one could set a correlation probability thresh-
old. This feature gives the possibility to present the user more valid results from



GHio-Ca 253

which to chose from. This value is configurable through the application settings
menu and is set to 70%. On the other side, if the remote service does not provide
this capability, the user is presented with the entire bag of words (hashtags) from
which to chose from.

The duty of the network module goes beyond the sole responsibility of han-
dling the interaction with external services. Due to limitations of some services
and to reduce network usage, we made the chose to previously upload the photos
to a server, and send the URL of the image to the different services we rely on.
With this approach, we reduce bandwidth usage: the user needs to upload the
photo only once and can take advantage of the URL to make the recognition
with more services.

The camera module, instead, manages the photo acquisition and persistence
process. These activities are fulfilled using the CameraFragment library. We
employ fragments in order to show the user a preview of the photo and, when
the user taps on the button to take the picture, saves it in a specific folder.
Successively, once the photo is acquired, the recognition process can start. This
module also gives the user the possibility to use either the frontal of back camera
view, manage flash (turn on/off or choose automatic option) and enable the user
to choose the size of the photos.

The last module interconnects the prior modules by employing custom
Android components for inter-module communication. Moreover, it manages the
application sharing process: as a matter of fact, after the recognition process fin-
ishes, the application gives the user the possibility to share the photo on different
social networks sites or via other means (e.g., email). For some of them (e.g.,
Facebook, Twitter, Instagram, Whatsapp, Linkedin) there is a specific imple-
mentation, while for the others, the default Android support is used.

3.2 Recognition Services

Libris (Library for Reverse Image Search) is a library that we developed in
order to simplify the image recognition process. The library aims to make easier
calling the different services utilized, in order to fulfill the image or character
recognition, defining an interface for the results.

All the requests return a response in JSON format, which is parsed. The more
relevant fields are embedded in an object, different for every service, which is
returned as result. If some error occurs during the request an Exception is
thrown.

For image recognition Libris gives the possibility to use all the services listed
in Sect. 1. In order to provide the Google Reverse Search Image service, we
programmatically search on Google the image, choosing the best returned result.

Before delving into the evaluation part, we discuss some limitations and
problems encountered with the adopted recognition services. The Azure Image
Recognition is the core of GHio-CA and it works pretty well. Unfortunately, we
had some problems with the service provider: firstly, it banned our first account;
secondly it did not accept our student subscription that would have enabled us



254 D. Polonio et al.

to take advantage of it. Finally, without any notification, Microsoft restored our
first account and we were able to use the Image Recognition service.

We also adopted an Image Recognition service from IBM to obtain more tags
from a shot performed by the user. Although we did not have problem with the
service per-se, we found a bug in the Watson SDK related to the data format
used, that we where able to fix.

4 Results

Through this section we discuss the evaluation strategy and the outcome of
the field trial. The main purpose of the trial was to asses the validity of each
recognition service by essentially computing some statistics on the returned bag
of words. To this end, we distributed GHio-Ca to 30 subjects and asked to
deselect tags that did not concern shots they had taken. Finally, they had to
send the result to us.

Our approach was to make the application usage as simple as possible for
the subject to contribute. Prior to the trial we prepared (i) a video tutorial
in which we showed what they had to do, (ii) wrote a mini-wiki where the
experiment was explained, (iii) modified the application accordingly. In line with
our recommendations, each subject was asked to take 5 photos. The final number
of photos that we received is 150.

For the evaluation part, we distributed to the subjects a modified version of
the application in order to contain and limit the API requests made to each indi-
vidual service. Indeed, there is an upper limit to the number of requests imposed
by each service. Also, instead of sharing the classification outcome through a
social media platform, each result is sent to a pre-configured email address.

4.1 Graphical Analysis

At the end of the testing phase, we collected all the e-mails received, we counted
them and we built several graphical representations that we explain as follows.

In first place, Azure was the service that gave us the best results with 85% of
correct tags (Fig. 4a), on the other hand Google Reverse Image Search (Fig. 4b)
was the worst one (with only 31% of matches), but we have to advocate that it
was not designed to provide tags from/to user images, thus we did not expect
good results from this service.

Imagga (Fig. 4c) and Watson (Fig. 4d) (respectively a service we found online
and an IBM Image Recognition service) didn’t stand out as we expected: for the
first one we had to filter a good chunk of tags since a lot of them had a low
confidence of correlation with images and the second one provided a lot of tags
that turned out to be wrong. The percentages of good tags are 78% for Imagga
and 65% for IBM Watson.

In Fig. 5 we can see the overall representation, with a percentage of 75% of
correct tags, that we consider to be a good result.



GHio-Ca 255

(a) Azure tagging results (708 tags
provided)

(b) Google tagging results (32 tags
provided)

(c) Imagga tagging results (520 tags
provided)

(d) Watson tagging results (841 tags
provided)

Fig. 4. Frequencies histogram of matches/mismatches

Fig. 5. Histogram of all tagging results (2101 tags provided)



256 D. Polonio et al.

(a) Histogram of all searches that give
back at least one match

(b) Histogram of all searches that give
back only correct tags

Fig. 6. Image classification details

In Fig. 6a we can see the number of times that services gave back at least
one correct tag. Even in this case, Azure was the service that had the best per-
formance but also Watson and Imagga gave back results that are good enough.

Finally, we present in Fig. 6b the number of times that a service returned a
bunch of tags that were all confirmed as matches by a user. In this case Azure
and Imagga had the best results. In this case even Google Reverse Image Search
has a positive result, because it gives to the user only one tag that could be
accepted or not.

5 Conclusion

In this article, we presented GHio-Ca, an mobile application enabling users to
access to different image recognition APIs. The application is used for automatic
image labeling (i.e., hashtagging) and can be easily integrated to the social net-
work ecosystem. GHio-Ca has a higher purpose that of speeding up the creation
of training/testing datasets for machine learning algorithms in the context of the
so called crowd learning. Our solution could be a step towards overcoming the
issue present in image recognition libraries (Sect. 2) given that everyone can use
an application on its smartphone (no usability problems) and it is possible to get
rid of external image recognition services after getting over a critical threshold
(solving the zero-day learning problem). We tested different recognition APIs,
inferring that the best one is Computer Vision API by Microsoft Azure [5], fol-
lowed by Imagga [8] and Watson [6]. As discussed in Sect. 4, Google Reverse
Image Search [7] is tailored to label images, hence the justification of the low
accuracy.



GHio-Ca 257

References

1. Bujari, A., Furini, M., Laina, N.: On using cashtags to predict companies stock
trends. In: Proceedings of IEEE CCNC, Las Vegas, NV, USA, pp. 25–28 (2017)

2. Roccetti, M., Salomoni, P., Prandi, C., Marfia, G., Mirri, S.: On the interpretation
of the effects of the infliximab treatment on Crohn’s disease patients from Facebook
posts: a human vs. machine comparison. Netw. Model. Anal. Health Inf. Bioinf.
6(1), 11 (2017)

3. Bujari, A., Licar, B., Palazzi, C.E.: Road crossing recognition through smart-
phone’s accelerometer. In: Proceedings of IFIP WD, Niagara Falls, ON, pp. 1–3
(2011)

4. Bujari, A., Ciman, M., Gaggi, O., Palazzi, C.E.: Using gamification to discover
cultural heritage locations from geo-tagged photos. Pers. Ubiquit. Comput. 21(2),
235–252 (2017)

5. Computer vision API by Microsoft Azure. https://azure.microsoft.com/en-us/
services/cognitive-services/computer-vision/

6. Visual recognition by IBM Watson. https://www.ibm.com/watson/
developercloud/visual-recognition.html

7. Google reverse image search. https://images.google.com/
8. Imagga. https://imagga.com/
9. Fu, X., Huang, J., Ding, X., Liao, Y., Paisley, J.: Clearing the skies: a deep net-

work architecture for single-image rain removal. IEEE Trans. Image Process. 26(6),
2944–2956 (2017)

10. Sabokrou, M., Fayyaz, M., Fathy, M., Klette, R.: Deep-cascade: cascading 3D deep
neural networks for fast anomaly detection and localization in crowded scenes.
IEEE Trans. Image Process. 26(4), 1992–2004 (2017)

11. Cao, J., Pang, Y., Li, X.: Learning multilayer channel features for pedestrian detec-
tion. IEEE Trans. Image Process. 26(7), 3210–3220 (2017)

12. Krishna, R., et al.: Visual genome: connecting language and vision using crowd-
sourced dense image annotations. Int. J. Comput. Vis. 123(1), 32–73 (2017)

13. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015)

14. Deng, J., Dong, W., Socher, R., Li, F.: ImageNet: a large-scale hierarchical image
database. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, June 2009

15. GHio-Ca source code repository. https://github.com/Augugrumi/ghioca
16. Mason, W., Suri, S.: Conducting behavioral research on Amazon’s Mechanical

Turk. Behav. Res. Methods 4(1), 1–23 (2012)
17. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition.

Neural Comput. 1(4), 541–551 (1989)
18. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to

document recognition. In: Proceedings of IEEE, vol. 86, no. 11, pp. 2278–2324,
November 1998

https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://www.ibm.com/watson/developercloud/visual-recognition.html
https://www.ibm.com/watson/developercloud/visual-recognition.html
https://images.google.com/
https://imagga.com/
https://github.com/Augugrumi/ghioca

	GHio-Ca: An Android Application for Automatic Image Classification
	1 Introduction
	2 Background and Related Work
	3 GHio-Ca
	3.1 Architectural Design
	3.2 Recognition Services

	4 Results
	4.1 Graphical Analysis

	5 Conclusion
	References




