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Abstract. Application of deep learning tends to outperform hand-
crafted features in many domains. This study uses convolutional neural
networks to explore effectiveness of various segments of a speech signal, –
text-dependent pronunciation of a short sentence, – in Parkinson’s dis-
ease detection task. Besides the common Mel-frequency spectrogram and
its first and second derivatives, inclusion of various other input feature
maps is also considered. Image interpolation is investigated as a solu-
tion to obtain a spectrogram of fixed length. The equal error rate (EER)
for sentence segments varied from 20.3% to 29.5%. Fusion of decisions
from sentence segments achieved EER of 14.1%, whereas the best result
when using the full sentence exhibited EER of 16.8%. Therefore, split-
ting speech into segments could be recommended for Parkinson’s disease
detection.
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1 Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease
after Alzheimer’s [1] and it is expected that the prevalence of PD is going to
increase due to population ageing. Medical intervention could be considered to
slow down the progression of PD if it is detected early, resulting in increased life
span and life quality for PD patients. Acoustic analysis of voice or speech signal
is considered as an important non-invasive tool in screening for PD. Related
work is summarized in [2], where splitting of speech into voiced and unvoiced
parts is recommended.
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Recent advances in deep learning helped reaching the state-of-the-art perfor-
mance in various domains – not only for images, but for audio data as well. For
example, the combination of deep neural networks with hidden Markov models
(DNN-HMM) in [3] outperformed traditional the Gaussian mixture model-based
(GMM-HMM) solution. Convolutional neural networks (CNN) were successfully
applied to automatic speech recognition [4,5], speech activity detection [6,7] or
acoustic scene classification [8]. When applying CNN to audio data it is common
to characterize an underlying signal using spectrograms, obtained by calculating
the Mel-frequency spectral coefficients (MFSCs) from extracted fragments of a
signal, as in [5,6,9,10]. Besides spectrograms, their first and second temporal
derivatives (delta and double delta) can also be considered as additional input
feature maps [4,7,8,11].

This study explores speech recordings of a four-words sentence in Lithuanian
language processed by the spectrogram-based CNN model for the task of PD
detection. Splitting a sentence into various segments, corresponding to separate
words and combinations of words or syllables, is considered. Besides MFSCs and
their first and second derivatives, usage of various other input feature maps is
also proposed. Due to different lengths of speech segments, corresponding to
the same part of the sentence, a solution to obtain a fixed length spectrogram
by image interpolation is compared to the commonly used sampling of a fixed
size window at random locations. Decision-level fusion is applied to improve PD
detection.

2 Data

Pronunciation of a phonetically balanced sentence in a native Lithuanian lan-
guage “turėjo senelė žil ↪a ožel ↪i ” (which translates into “granny had a little grey-
ish goat”) was recorded in a sound-proof booth. Recordings were done using an
acoustic cardioid (AKG Perception 220, frequency range 20–20000 Hz) micro-
phone. Microphone was located at ∼10 cm distance from the mouth. The audio

Table 1. Sentence segments, containing separate words (# 1–4), transitions between
words when split on syllables (# 5–6), pairs of words (# 7–8), or full sentence (# 9).
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format was mono PCM wav (16 bits at 44.1 kHz sampling rate). A mixed gender
database collected contains 268 subjects (194 healthy controls and 74 PD cases)
ranging from 22 to 85 years in age.

Each speech recording was manually annotated and split into sentence seg-
ments, containing: separate words, transitions between words and pairs of con-
secutive words. A full sentence without any splitting (SENTENCE segment) was
also considered. Details on sentence segments used are in Table 1.

3 Methodology

3.1 Input Feature Maps

An important step in acoustic analysis is characterization of an audio signal
by various features. Mel-frequency spectral coefficients (MFSC) is a commonly
applied transformation to audio signal spectrum, resulting in the Mel-warped
spectrogram. The MFSC spectrogram contains values of amplitude for each fre-
quency coefficient (on the vertical axis) and a time moment (on the horizontal
axis). Logarithmic energy values computed after converting an audio signal into
Mel-frequency without application of the direct cosine transform, as proposed
in [12,13], are used here for MFSCs. Several feature maps, e.g. after considering
temporal derivatives of MFSCs, can be stacked on top of each other to form a
3-dimensional array, similarly to the RGB channels in image data.

This work considers several variants of short-term audio features, resulting
in nine input feature maps in total:

1. Mel-frequency spectral coefficients (MFSC).
2. First temporal derivative of MFSC (MFSCΔ).
3. Second temporal derivative of MFSC (MFSCΔΔ).
4. Levinson-Durbin reflection coefficients (LRC) [14].
5. Vocal tract area coefficients (V TAC) [15].
6. Ratio of the area of the two successive vocal tract tubes calculated along the

frames (V TACR) [15].
7. Classical spectrogram - frequency spectral coefficients (FSC).
8. Linear predictive coding coefficients (LPCC).
9. Mel-frequency cepstral coefficients (MFCC).

Figure 1 illustrates an example speech signal and input feature maps
extracted from it. The number of coefficients (ticks on the vertical axis) con-
sidered was 80.

3.2 Convolutional Neural Network

The convolutional neural network (CNN) is a variant of standard neural network.
Instead of fully connected layers CNN has architecture composed of consecutive
pairs of convolution and pooling layers. CNN enables learning of local features
and promotes weight sharing, where internal representations are a result of con-
volving the input with a filter mask. Each convolutional layer has a number
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Fig. 1. An example of input feature maps extracted from speech signal.

of filter masks, which are learned during training, and application of convolu-
tion results in a new feature map, which is downsampled to a smaller size by
using a pooling layer. Input feature maps in CNN are usually organized as a
3-dimensional array, where flat 2D planes in such an array are stacked input fea-
ture maps. For example, when CNN is applied on images, an array of 2D input
feature maps corresponds to RGB channels. As shown in Fig. 2, every input fea-
ture map Oi(i = 1, ..., I), where I is the number of channels, is connected to
further feature maps Qj(j = 1, ..., J) through application of convolution. The i-
th input feature map is connected to j-th feature map through convolution with
a local weight matrix wij , known as a filter mask. The filter mask is defined by
a size (m×n), where (m) corresponds to a few spectrogram frequencies and (n)
to a small temporal window. A non-input feature map Qj is obtained using the
convolution operation ∗:

Qj = σ

(
I∑

i=1

Oi ∗ wij

)
(j = 1, ..., J) (1)

where Oi is the i-th input feature map, wij corresponds to a filter mask, σ is an
activation function of the neural network. Therefore, CNN could be considered
as a transformation of an input image through a chain of convolutions by the
filter masks w learned from the data.



210 E. Vaiciukynas et al.

Input feature maps
Oi (i=1, 2, …, I) Convolution feature maps

Qj (j=1, 2, …, J) Pooling feature maps
Pj (j=1, 2, …, J)

Convolution Pooling

maxWij

i = 1, 2, …, I
j = 1, 2, …, J

Input layer
Convolution layer

Pooling layer

Fig. 2. A pair of convolution and pooling layers in the CNN architecture.

As shown in Fig. 2, the max-pooling operation is performed on each feature
map, resulting from the convolution. The goal of pooling is to downsample the
feature maps to smaller resolution. The max-pooling operation can be written
as:

pijk =
G

max
n=1,m=1

qi,(j − 1)× s+n, (k − 1)× s+m (2)

where G is the pooling size, s denotes the shift size (by how many pixels the
pooling window is shifted), qijk is the jk-th element of i-th convolutional feature
map Q.

After a pair (or several pairs) of convolution-pooling layers, the CNN is com-
pleted using a fully-connected dense layer, which uses feature maps from the
last pair of convolution-pooling layers flattened into a one-dimensional vector.
The output layer, connected to the dense layer, realizes the detection task by
the soft-max of 2 neurons. An example of the CNN architecture, containing two
pairs of convolution-pooling layers, is illustrated in Fig. 3.

Fig. 3. An example of the CNN architecture, having convolution-pooling layers and a
fully-connected multilayer perceptron (MLP) with 2 output neurons (predicted classes).

4 Experimental Investigations

A CNN with 4 pairs of convolution-pooling layers and a fully-connected dense
layer with 2 soft-max neurons in the output (as shown in Fig. 3) was used
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for the experiments. The number of neurons in the dense layer (hidden layer
of MLP before the soft-max ) was 256, whereas other parameters of the CNN
architecture are listed in Table 2. Filter masks of the first convolution layer had
rectangular-shaped dimensions of 7×5, as recommended by [16] for spectrogram
data, whereas filters in subsequent convolutions had traditional square-shaped
dimensions of 3 × 3.

Table 2. Parameters for 4 pairs of the convolution-pooling layers.

Pair of layers Convolution layer Pooling layer

# of maps Filter size Window size

I 96 7 × 5 3 × 3

II 256 3 × 3 3 × 3

III 384 3 × 3 3 × 3

IV 256 3 × 3 3 × 3

Length of speech recordings varies, therefore the size of the input feature
maps is not constant with respect to the temporal axis. Input feature maps of
fixed size were obtained using the following techniques: (a) cutting out signal
fragments of 80 pixels in width at n random locations (F80); (b) cutting out
signal fragments of 120 pixels in width at n random locations (F120); (c) re-sizing
(squeezing or extending) a spectrogram image using the bi-cubic interpolation
into a fixed width, corresponding to the mean width of all images (Fmean); (d)
squeezing spectrogram image to the minimum width of all images (Fmin). The
number of random locations to sample from in the F80 and F120 cases was set to
n = 41, which corresponds to the factor of data augmentation. Therefore, each
subject, represented by a speech recording, has a single data example in the case
of Fmean and Fmin, but n examples in the case of F80 and F120.

Detection performance was evaluated using the stratified 20-fold cross-
validation. When performing data splits for the cross-validation, subject-level
disjointedness was respected and all data examples for a subject (in Fmean and
Fmin cases) were either in a training or in a test fold. The equal error rate
(EER), measured at the operating point of detector where sensitivity becomes
equal specificity (or false alarm becomes equal miss rate) [17], was obtained for
test data and is reported as a goodness-of-detection metric.

Results of initial experiments, not reported here, indicated improved detec-
tion performance when using all nine available input feature maps compared
to a smaller combination or a single feature map. Detection results when using
all nine feature maps are reported in Table 3. Interpolation by squeezing input
maps to the smallest width (Fmin) had slightly better performance than inter-
polation to the average width (Fmean). Nonetheless, the type of fragmentation
did not affect the EER considerably. Meanwhile, the choice of sentence segment
had a stronger influence on the EER varying from 20.3% for the ZILA segment
to 29.5% for the TUREJO segment.
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Table 3. Detection performance by EER (in %) for each type of fragmentation and
sentence segment when using all input feature maps (shown in Fig. 1). Mean EER
through all types of fragmentation is in the last line.

Type TUREJO SENELE ZILA OZELI LE O RE SE TU LE ZI LI SENTENCE

Fmean 30.5 23.1 25.1 26.4 27.0 25.3 24.6 25.9 23.4

Fmin 29.5 23.4 21.9 25.6 24.6 26.7 23.1 24.7 21.4

F120 30.6 23.2 20.3 24.0 24.6 28.7 26.1 24.7 24.6

F80 34.0 23.8 22.0 24.0 24.7 28.3 27.6 25.6 24.9

Mean 31.2 23.4 22.4 25.0 25.2 27.2 25.4 25.2 23.6

Due to the fact that the dataset was expanded in the case of F80 and F120

types, the example-wise EER shown in Table 3 is not particularly informative
subject-wise. To obtain the subject-wise EER, the output class probabilities of n
examples from a single recording were fused by averaging. Results in the subject-
wise EER form after such fusion are given in Table 4. We can notice lower EER
values, especially for the longer segments. It is also worth mentioning that data
augmentation resulting from the random sampling (F80 and F120), after fusion
tends to outperform the interpolation approaches (Fmean and Fmin) irrespective
of sentence segment used.

Table 4. Detection performance by EER (in %) after fusing subject-wise decisions
from n examples through averaging of output class probabilities.

Type TUREJO SENELE ZILA OZELI LE O RE SE TU LE ZI LI SENTENCE

F120 27.3 18.7 18.1 22.2 20.4 25.8 20.9 20.5 16.8

F80 35.0 19.3 20.2 21.3 18.8 22.2 21.2 20.3 17.1

Aiming to improve over the best detection result (EER of 16.8% when using
the SENTECE segment and the F120 fragmentation type), decision-level fusion
of all nine segments was considered. Fusion of decisions arising for each kind
of sentence segment (and n examples in the F80 and F120 cases) was done by:
(a) voting (vote), where the majority class is considered; (b) averaging output
probabilities (prob); (c) weighted average of output probabilities (prob w), where
weights are set based on the accuracy obtained using that segment; (d) the ran-
dom forest [18] classifier (RF ). The results of the decision-level fusion of sentence
segments are given in Table 5. We can again notice that interpolation deterio-
rates detection, but now re-sizing to the average width outperforms squeezing.
Meanwhile, the lowest EER of 14.1% was achieved for the (b) fusion case when
random sampling of short fragments (F80) was used.
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Table 5. Detection performance by EER (in %) for decision-level fusion of all sentence
segments. Results are reported by fragmentation type and fusion variant.

Type vote prob prob w RF

Fmean 18.4 18.2 17.8 21.0

Fmin 19.2 20.0 19.8 20.1

F120 15.8 14.9 14.8 16.8

F80 15.0 14.1 14.3 14.4

5 Conclusions

This work investigated PD detection from a speech signal using convolutional
neural networks. Spectrograms and several other types of short-term features
were considered as stacked 2D input maps to the CNN. A speech recording was
split into various sentence segments and influence of each segment to the PD
detection performance was evaluated and compared to the decision-level fusion
of all segments case. The detection performance measured in EER varied from
29.5% for the TUREJO segment to 20.3% for the ZILA segment. This indicates
that some parts of speech recording are more effective for the PD detection task
than others.

Interpolation of spectrogram to the fixed length could not outperform the
case of using fragments of fixed length taken at random locations and resulted
in worse performance when fusion was considered. Therefore, data augmenta-
tion, arising from sampling of fixed length fragments, can be considered as more
beneficial for CNN than using interpolation and less data.

The best detection result, EER of 14.1%, was achieved when using the
decision-level fusion of sentence segments, whereas the best result without split-
ting a sentence into segments showed EER of 16.8%. Therefore, splitting a speech
signal into several potentially overlapping segments and later combining deci-
sions, obtained on each segment as well as a full-length signal, helps to improve
PD detection. In this work splitting was done manually, but an automatic way
of segmentation for text-dependent recordings should be devised in the future.
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