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60131 Ancona, Italy

s.spinsante@staff.univpm.it

http://www.tlc.dii.univpm.it

Abstract. Fall detection is a well investigated research area, for which
different solutions have been designed, based on wearable or ambient sen-
sors. Depth sensors, like Kinect, located in front view with respect to the
monitored subject, are able to provide the human skeleton through the
automatic identification of body joints, and are typically used for their
unobtrusiveness and inherent privacy-preserving capability. This paper
aims to analyze depth signals captured from a Kinect used in top view,
to extract useful features for the automatic identification of falls, despite
the unavailability of joints and skeleton data. This study, based on a set
of signals captured over a number of test users performing different types
of falls and activities, shows that the speed of falling computed over the
blob identifying the person, extracted from the depth images, should be
used as a feature to spot fall events in conjunction with other metrics,
for a better reliability.

Keywords: Fall detection · Depth image processing · Blob
Features · Speed of falling

1 Introduction and Background

In recent years, many consumer electronics devices and products, like tradi-
tional appliances, have found new and sometimes unexpected adoption as differ-
ent tools, usually as sensors. In fact, in the broadest definition, a sensor is “an
electronic component, module, or subsystem whose purpose is to detect events
or changes in its environment and send the information to other electronics,
frequently a computer processor” [7]. With respect to this definition, a common
appliance, like a fridge, once turned into a smart object, may become a sensor
to detect and analyse events related to Activities of Daily Living (ADLs) like
cooking or having meals, and enable an unobtrusive behavioral analysis to rec-
ognize anomalous habits [4,5]. The same happened with a commercial product
designed and shipped for gaming purposes by Microsoft, the Kinect, a motion
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sensing input device for video game consoles and Microsoft Windows PCs. Based
around the concept of a webcam-style add-on peripheral, Kinect enables users
to control and interact with their console or computer without the need for a
game controller, just using gestures and spoken commands, i.e. through a nat-
ural user interface. Since Kinect became fully available for PC users, together
with its Software Development Kit (SDK), many researchers started using it for
applications not related to gaming, but pertaining to gesture, action and activ-
ity recognition and computer vision, in a broad sense, spanning from device-free
interaction with other systems or devices, to gait and posture analysis, to fall
detection and remote rehabilitation. Examples of the aforementioned applica-
tions may be extensively found in the literature (see [1,3,6], among others).

Among the possible fields of application of the Kinect device, this paper
investigates its use in fall detection, assuming a specific constraint. In fact, dif-
ferently from most of the literature available on this topic, which assumes to use
the sensor in a front view configuration, we use Kinect in a top-view setting, i.e.
the sensor is installed on the ceiling of a room (like the lab into which tests and
experiments have been carried out). This way, the subject’s skeleton, and the
joints’ coordinates Kinect is able to compute when used in front view, are not
available for processing. In a previous paper [2], we presented an algorithm for
automatic fall detection exploiting the Kinect in the same top-view configuration.
That work based the fall detection capability on a number of depth image pro-
cessing functions, able to recognize the blob of a person and check its geometric
features against a number of anthropometric thresholds, and on comparing the
relative height of the blob with respect to the floor (details are available in [2]).

In this paper, we extensively test the algorithm on different types of falls,
to identify a suitable feature (generated by processing the blob data) for the
purpose of automatic fall detection and classification. In fact, we focus on the
speed of movement of the person’s blob during the fall, and on the amount of
variation of the blob’s height with respect to the floor, to check if these figures
may be used to discriminate between a fall or an ADL, or among different types
of falls. Again, several works in the literature build upon this idea, but they
exploit the subject’s head joint coordinates provided by the sensor used in a
front-view configuration, or the center of mass coordinates computed from the
joints. We opt for a top-view setup, as it results to be far less obtrusive in a
real-life scenario, and even more robust to possible occlusions due to objects,
like furniture, located in the monitored environment.

The paper is organized as follows: Sect. 2 presents both materials and meth-
ods used in our study, whereas Sect. 3 describes and discusses the experiments
carried out and the results obtained. Finally, Sect. 4 concludes the paper.

2 Materials and Methods

The system setup adopts a Kinect device in top view configuration, at a max-
imum height of 3 m from the floor, thus providing a coverage area of 8.25 m2.
To extend the monitored area, in principle the sensor could be elevated up to
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around 7 m (far higher than typical living environments); beyond this distance
the depth data become unreliable [8]. The algorithm described in [2] works with
raw depth data (given in millimeters), that are captured at a frame rate of 30 fps
with a resolution of 320× 240 pixels, using the Microsoft SDK v.1.5. The depth
signal output by the sensor is filtered to reduce noise and to improve the blob
identification. Once the person’s blob is identified, the algorithm assigns it a
centroid, the 3D coordinates of which are stored during the activity execution.
The fall detection tool identifies the falls and uses different colors (yellow, red,
green) to notify conditions of warning, fall and recovery, respectively. In this
work, we use the 3D coordinates of the centroid and process them to obtain its
speed of movement along the vertical direction (z axis).

2.1 The Fall Detection Algorithm

The fall detection algorithm, the details of which have been published in [2],
relies upon some basic operations that are schematically shown in Fig. 1 and can
be summarized as follows:

– preprocessing and segmentation: the incoming depth frame is pre-processed
to enable the succeeding steps, and a so-called reference frame is generated
to improve the identification of human subjects;

– distinguish object step: this component of the algorithm identifies, splits, and
classifies into objects the different clusters of pixels in the reference frame;

– identification of human subject: starting from the set of separated objects,
those representing a human subject are identified by checking several anthro-
pometric relations;

– subject tracking and fall detection: the system tracks the movements of the
human subjects in the depth frames, and detects if a fall occurs. The possible
fusion of blobs occurring when two or more subjects get in contact is properly
handled.

Fig. 1. Overview of the fall detection system (from [2])

The algorithm, conceived and designed with low complexity in mind, iden-
tifies the falls by comparing the depth values taken by the pixels representing
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the human subject’s centroid to a threshold empirically set to 400 mm from the
floor. When the detected height of the centroid undergoes the threshold, the
algorithm triggers an alarm to notify a fall event. As shown in Fig. 2, the fall
detection implemented by the algorithm depends only on the relative height of
the centroid to the threshold, not on its time variation along the vertical axis.
By exploiting the data provided by the algorithm (the coordinates of the cen-
troid), and based on the knowledge of the frame rate, in this work we investigate
the relation between the time variation of the centroid vertical position (i.e. its
velocity along the z axis) and the type of action (fall or ADL) simulated by the
subject, to possibly identify a useful feature for automatic action/fall recognition
independent from the threshold value that needs to be heuristically defined.

Fig. 2. Sample sequence of depth values taken by the subject’s centroid, compared
to the 400 mm threshold. A fall event is detected and highlighted in red (Color figure
online)

2.2 Experimental Protocol

In order to evaluate the algorithm performances, several tests were carried out in
a laboratory environment. Tests involved 17 healthy subjects, 3 females and 14
males, aged between 21 and 55 years. More specifically, 32 different types of falls
and 8 ADLs have been simulated by each tester, for a total amount of 544 falls
and 136 ADLs. The experimental protocol is reported in Table 1. The simulated
falls can be divided into 8 groups: backward finishing lying, backward finishing
sitting, forward finishing lying, forward finishing on knees, forward finishing on
knees grabbing a chair, forward finishing on knees grabbing a sofa, left side,
and right side. For each of them, 4 different situations have been considered:
(i) falling from the stand position and then remaining on the ground; (ii) falling
from the stand position and then recovering; (iii) falling during walking and then
remaining on the ground; (iv) falling during walking and then recovering.

Regarding ADLs, the performed activities can be divided into 4 groups: pick
up an object from the floor with bending, pick up an object from the floor with
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squatting, sit and get up from a chair, and sit and get up from a couch. For each
of them, two situations have been considered: (i) from a standing position; (ii)
from walking.

All testers were asked to sign an informed consensus form before starting the
experiment, and let perform the tasks freely. Foam mats were used to soften the
blow and protect subjects from injuries when simulating falls.

3 Results and Discussion

As a first analysis, we considered falls belonging to the classes FBESFR (back-
ward fall, finishing sitting), FFOKFR (forward fall on the knees), FFOKSO
(forward fall, on the knees, grabbing the sofa), and FFOKCH (forward fall, on
the knees, grabbing the chair). Sample trajectories of the four classes in the 3-
D space are shown in Figs. 3(a)–(d), for one of the subject who performed the
experimental tests. As visible in the Fig. 3(a) and (b), a fall belonging to class
FBESFR originates a different trajectory than a fall belonging to class FFOKFR,
notably featuring an opposite direction. On the other hand, falls belonging to
classes FFOKSO and FFOKCH (Fig. 3(c) and (d)) have similar patterns and
differ for the value of the z coordinate in the final position (denoted by t end).

Fig. 3. Sample fall trajectories for the classes (a) FBESFR, (b) FFOKFR, (c)
FFOKSO, and (d) FFOKCH for one of the subjects executing the test. Labels t start
and t end denote the starting and ending point of the trajectory

For each type of fall within each class, the speed of fall along the z axis
has been computed as the difference between the z coordinate value in two
consecutive frames, captured at a rate of 30 fps, i.e. over a 33 ms time interval.



158 S. Spinsante et al.

Table 1. Summary of fall detection experiments. “Subj.” stands for subject.

Type Activity name Description

Backward fall,

finishing lying

FBELFRST Subj. is standing, falls backwards, and remains on the

ground

FBELFRSTRC Subj. is standing, falls backwards, stays on the ground for a

while and then gets up again

FBELFRWK Subj. walks, falls backward, and remains on the ground

FBELFRWKRC Subj. walks, falls backward, stays on the ground for a while

and then gets up again

Backward fall,

finishing sitting

FBESFRST Subj. is standing, falls backwards, and remains on the

ground

FBESFRSTRC Subj. is standing, falls backwards, stays on the ground for a

while and then gets up again

FBESFRWK Subj. walks, falls backward, and remains on the ground

FBESFRWKRC Subj. walks, falls backward, stays on the ground for a while

and then gets up again

Forward fall,

finishing lying

FFELFRST Subj. is standing, falls forwards, and remains on the ground

FFELFRSTRC Subj. is standing, falls forwards, stays on the ground for a

while and then gets up again

FFELFRWK Subj. walks, falls forwards, and remains on the ground

FFELFRWKRC Subj. walks, falls forwards, stays on the ground for a while

and then gets up again

Forward fall on

the knees

grabbing the

chair

FFOKCHST Subj. is standing, falls forwards, and remains on the ground,

grabbing the chair

FFOKCHSTRC Subj. is standing, falls forwards, stays on the ground

grabbing the chair for a while, and then gets up again

FFOKCHWK Subj. walks, falls backward, and remains on the ground,

grabbing the chair

FFOKCHWKRC Subj. walks, falls backward, stays on the ground grabbing

the chair for a while, and then gets up again

Forward fall on

the knees

FFOKFRST Subj. is standing, falls forwards, and remains on the ground

FFOKFRSTRC Subj. is standing, falls forwards, stays on the ground for a

while and then gets up again

FFOKFRWK Subj. walks, falls forwards, and remains on the ground

FFOKFRWKRC Subj. walks, falls forwards, stays on the ground for a while

and then gets up again

Forward fall on

the knees

grabbing the

sofa

FFOKSOST Subj. is standing, falls forwards, and remains on the ground,

grabbing the sofa

FFOKSOSTRC Subj. is standing, falls forwards, stays on the ground

grabbing the sofa for a while and then gets up again

FFOKSOWK Subj. walks, falls forwards, and remains on the ground,

grabbing the sofa

FFOKSOWKRC Subj. walks, falls forwards, stays on the ground grabbing the

sofa for a while and then gets up again

Left side fall FSLEFRST Subj. is standing, falls on the left side, and remains on the

ground

FSLEFRSTRC Subj. is standing, falls on the left side, stays on the ground

for a while and then gets up again

FSLEFRWK Subj. walks, falls on the left side, and remains on the ground

FSLEFRWKRC Subj. walks, falls on the left side, stays on the ground for a

while and then gets up again.

(continued)
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Table 1. (continued)

Type Activity name Description

Right side fall FSRIFRST Subj. is standing, falls on the right side, and remains on the

ground

FSRIFRSTRC Subj. is standing, falls on the right side, stays on the ground

for a while and then gets up again

FSRIFRWK Subj. walks, falls on the right side, and remains on the

ground

FSRIFRWKRC Subj. walks, falls on the right side, stays on the ground for a

while and then gets up again

Pick up object

from floor with

bending

APBEST Subj. is standing, bends, picks up an object on the floor,

and then stands up again

APBEWK Subj. walks, bends, picks up an object on the floor, and

then stands up again

Pick up object

from floor with

squatting

APSQST Subj. is standing, squats, picks up an object on the floor,

and then stands up again

APSQWK Subj. walks, squats, picks up an object on the floor, and

then stands up again

Sit and get up

from the chair

ASCHST Subj. is standing, sits on a chair, and then stands up again

ASCHWK Subj. walks, sits on a chair, and then stands up again

Sit and get up

from the couch

ASSOST Subj. is standing, sits on a couch, and then stands up again

ASSOWK Subj. walks, sits on a couch, and then stands up again

As a first possible discriminating feature, we considered the mean value of the
speed of fall over all the test repetitions performed by each subject, and over all
the subjects performing the same type of fall. The results obtained for the four
classes considered are shown in Fig. 4. Apart from the case of FFOKCH-ST fall,
that shows a quite high variability over the different 17 subjects who performed
the test, with a much larger 95% confidence interval, it is not possible to say
that the average speed of fall alone can be taken as a feature able to discriminate
in a clear fashion the different types of falls simulated. In fact, both the mean
values and the 95% confidence intervals are very similar over the four classes of
falls analyzed.

We then move to analyze a different quantity, i.e. the mean difference between
the ending and the starting values of the z coordinate, for each type of fall, which
we call Δz. Figure 5 shows the mean value of Δz over all the test repetitions
performed by each subject, and over all the subjects performing the same type
of fall, again for the four classes considered before. In this case, it is quite evident
that falls belonging to the class FBESFR may be grouped into a cluster (denoted
as A in the graph) that is distinguishable from falls belonging to the classes
FFOKCH, FFOKFR and FFOKSO, that are grouped into cluster B. Backward
falls ending sitting in cluster A show a greater mean Δz than forward falls ending
on the knees in B, irrespective of the different subjects’ physique (the details
regarding the subjects who performed the experiments are provided in Table 2).
On the contrary, it is not possible to rely on the mean Δz values to discriminate
among the different types of forward falls ending on the knees, that have been
labeled as group c, d, and e in Fig. 5.



160 S. Spinsante et al.

Fig. 4. Mean speed of fall along the z axis (black squares) and 95% confidence interval
for the classes FBESFR, FFOKCH, FFOKFR and FFOKSO, averaged over all the
subjects executing the test

Table 2. Information about the 17 voluntary users involved in the test phase.

Number Gender Age Height (cm) Weight (Kg)

1 Female 40 162 60

2 Female 29 170 74

3 Female 25 160 52

4 Male 30 176 65

5 Male 55 173 80

6 Male 21 169 58

7 Male 21 178 70

8 Male 23 175 59

9 Male 28 178 74

10 Male 28 160 76

11 Male 26 182 73

12 Male 40 187 87

13 Male 21 189 80

14 Male 22 167 64

15 Male 22 170 72

16 Male 21 188 78

17 Male 21 177 78

Mean 28 174 71

Std 9.3 9.2 9.5
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Fig. 5. Mean Δz values and 95% confidence intervals for the classes FBESFR,
FFOKCH, FFOKFR and FFOKSO, averaged over all the subjects executing the test

4 Conclusion

In this paper we provided a preliminary investigation about the possibility to
use the speed of fall as a feature to discriminate among different types of falls,
obtained by processing the depth data provided by a Kinect device placed in top
view with respect to the subject. This approach differs from those usually found
in the literature, as the adoption of Kinect in top view makes not available the
automatic detection of the subject’s joints, which are output by the sensor when
used in front view with respect to the monitored person. The speed of fall is
obtained indirectly, by processing the depth frames through the identification
of the person’s blob in the image, and tracking of its relative distance from
the sensor during the sequence of frames referred to the fall. The outcomes
of this first attempt show that the average speed of fall alone is not enough
to discriminate among falls, but this feature can be used in conjunction with
others, like the variation of the vertical coordinate due to the fall, to improve the
classification reliability. As already stated, this is just a preliminary study, but,
based on the promising outcomes obtained, we aim to fully exploit the dataset
collected through the experiments with 17 subjects, to improve our analysis and
also include the evaluation of the activities of daily living.
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