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Abstract. Automatic detection of emotional stress is an active research
domain, which has recently drawn increasing attention, mainly in the
fields of computer science, linguistics, and medicine. In this study, stress
is automatically detected by employing speech-derived features. Related
studies utilize features such as overall intensity, MFCCs, Teager Energy
Operator, and pitch. The present study proposes a novel set of features
based on the spectral tilt of the glottal source and of the speech signal
itself. The proposed features rely on the Probability Density Function
of the estimated spectral slopes, and consist of the three most probable
slopes from the glottal source, as well as the corresponding three slopes
of the speech signal, obtained on a word level. The performance of the
proposed method is evaluated on the simulated dataset of the SUSAS cor-
pus, achieving recognition accuracy of 92.06%, when the Random Forests
classifier is used.
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1 Introduction

Automatic detection of stress from speech is of great interest, since speech is con-
sidered a significant modality in evaluating stress [1]. Although there is no single
agreed definition on speech under stress, it can be referred as “Stress is observ-
able variability in certain speech features due to a combination of unconscious
response to stressors and/or conscious control” [2]. Automatic stress detection
concerns several disciplines such as computer science, linguistics, and medicine.
The importance of detecting stress automatically lies in the high prevalence of
stress in the modern lifestyle [3], enfolding a wide range of applications from
cockpit electronics to polygraph testing, health care, robotics, interactive voice
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response systems in call-center applications, and in Human Computer Interfaces
(HCIs). Such a system could be very valuable in prioritizing emergency calls in
hospital/support line call centers where evaluating the severity of each case may
be very critical.

The important contribution of human speech in stress assessment has been
proved by several studies (e.g., [4]). Speech is a natural human expression in
communication. Some features derived from speech (e.g., glottal spectral slope)
are more difficult to be manipulated than others (e.g., pitch, intensity). The
elicited speech is affected by the speaker’s emotions, since emotions affect the
muscle tension, which in turn impacts the vortex-flow interaction pattern in the
vocal tract [5]. Although in some cases no noticeable effect is observed, there
are many cases where speech alteration under stress is significant and easily
perceived. The level of change in speech production depends on the intensity and
type of emotion expressed (e.g., anger, fear) and/or the environmental conditions
the speaker is located into (e.g., Lombard effect [6]). Other studies focus on
stress detection using facial cues derived from eyes, mouth, head behavior and
camera based heart activity [7]. Additionally, the combination of audio and visual
features has proven profitable for emotion recognition [8].

Overall intensity, Teager Energy Operator (TEO), Mel-Frequency Cepstral
Coefficients (MFCCs), and functionals of the fundamental frequency (f0), are
among the most widely adopted features for detecting speech under stress [9].
The influence of stress in speech is evident, as signals derived from high stressed
speech result in greater amplitude of the (glottal) waveform, and more asym-
metrical glottal pulse as compared to neutral condition. These changes have an
impact on the intensity of the spectrum; it is shifted over the spectrum, and
concentrated in the higher frequencies. The literature shows that the relative
overall energy of the spectrum increases in a stressed condition; however this is
not a sufficient indicator on its own. The distribution and/or spectral tilt of the
spectrum’s energy has also to be considered, as suggested in [10].

In the present study, metrics based on the spectral tilt are examined, proving
the significant role of spectral tilt in discriminating stressed from neutral speech
with high accuracy. Feature extraction is performed using the simulated dataset
of the SUSAS corpus [11]. In order to validate the reliability of the proposed
features, the statistical test Mann–Whitney is used, which revealed a statisti-
cally significant difference between the stressed and neutral indicators and the
Random Forests are used for the classification.

2 Related Work

Several studies have focused on the detection of emotional stress from speech,
highlighting the distinctive differences in phonation between stressed and neutral
speech [12]. Feature analysis methods for classification of speech under stress
have also been proposed [9]. Most studies use simulated stressed speech data for
evaluation [13] with specific utterances usually being isolated for the analysis
[12,14]. A notable limitation of the latter is that the results degrade as the
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test conditions drift from the environmental or experimental conditions of the
training data [12].

A review of available literature showed that the most widely studied fea-
tures for discriminating neutral and stressed speech are: overall intensity, TEO,
MFCCs and functionals of the fundamental frequency (mainly standard devia-
tion, mean and variance) [9]. Shah et al. [15] employed Discrete Wavelet Trans-
form (DWT) for feature extraction, and Artificial Neural Networks (ANN) for
classification, achieving 85% recognition accuracy. In Godin et al. [9], 6 glottal
features were extracted, while Gaussian Mixture Model (GMM) was used as the
classifier, achieving detection accuracy of 69%. Sondhi et al. [16] suggested to
use the mean pitch and the formants (F1, F2) of the human voice as reliable and
non-invasive indicators of emotional stress, since they were the acoustic measures
providing the most significant change under stress. Eleven subjects participated
in this study, providing answers from a specific set of responses: “yes”, “no”,
“haan” (“haan” means “yes” in Hindi language). In [12], TEO based features
were extracted and Hidden Markov Model (HMM) was used for the stressed
speech classifier. The classification error rate for the stress/neutral speech was
4.7/4.6% for the closed-speaker-set system, and 13.6/4.0% for the open-speaker-
set system. Fernandez and Picard [17] explored the use of a feature set based on
subband decompositions and the TEO. The corpus used consisted of 598 short
speech utterances collected from four subjects driving in a simulator. The best
performance obtained, with the speaker-dependent mixture model, achieved an
accuracy of 96.4% on the training set, and of 61.2% on a separate testing set.
Also, the authors concluded that the performance of the speaker-independent
model degrades with respect to the models trained on individual speakers.

A second group of studies [13], have underlined the spectrum significance
for discriminating stressed and neutral speech characteristics. Shukla et al. [13]
extracted the Relative Formant Peak Displacement (RFD) and MFCCs, as fea-
tures for neutral and stressed speech separation. The simulated speech data
(neutral, angry, sad and Lombard) used for evaluation was in Hindi and Indian
language. A HMM was used, and the combination of RFD and MFCC achieved
59.53% accuracy. In [18], articulatory, excitation (pitch, duration, intensity) and
cepstral based features were estimated using the SUSAS database and an HMM
classifier achieving an accuracy of 80.6%.

A different approach was proposed by Yao et al. [14], where physical charac-
teristics of the vocal folds were investigated. A novel metric, namely the Muscle
Tension Ratio (MTR) was introduced to identify speech under stress. Vowel
instances /a/ were isolated for the analysis and ROC curves were used for eval-
uating and comparing the classification of MTR with the Spectral Flatness
Measure (SFM), a conversational method of stress measurement. Experimen-
tal results showed that MTR outperforms the conversational method of stress
measurement.

Drawn from the reported review of literature, SUSAS is among the most
widely employed databases used in defining metrics for the automatic discrimi-
nation of stressed and neutral speech. Due to the overt variances in the speech
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and glottal spectrum of stressed and unstressed speech, the features selected for
the investigation in this work are based on spectrum variance.

3 Dataset

As already mentioned, the speech corpus used in this study is the widely used,
simulated dataset of SUSAS [11]. It consists of 9 male speakers, uttering isolated-
words (e.g., “break”, “enter”, “change”) in a quiet environment. The recordings
used are 70 words per speaker, pronounced in four styles: neutral, angry, loud,
and Lombard effect. In this study only these three stress types are used as
they are the most common employed stress conditions [5]. Speech samples are
separated into two general clusters: (a) unstressed speech cluster consisting of
the neutral utterances (b) stressed speech cluster consisting of the angry, loud,
and Lombard utterances. The total number of samples is 630 words of unstressed
speech and 1890 words of stressed speech. The speech tokens were sampled in a
16-bit A/D converter with 8 kHz sampling rate.

4 Feature Extraction

In the speech production model, the acoustic speech signal is the result of the
glottal source signal1 modulated by a transfer (filter) function, the vocal tract.
Equation (1), shows mathematically this convolution process

s[n] = g[n] � v[n] (1)

where s[n] is the speech signal derived from the convolution of the impulse
response of the vocal tract v[n] with the glottal source excitation signal g[n].
When a speaker is under stress, both the vocal folds and the movement of
the articulators (vocal tract) are affected. Therefore, for a reliable detection
of stressed speech, features based on the glottal source signal and speech charac-
teristics should be taken into consideration. In human speech, stressed syllables
are produced with greater vocal effort. If a speaker makes greater vocal effort,
the amplitudes of the higher frequencies increase more than that of the lower
frequencies [19]. For this reason, the use of the spectral tilt is introduced as a
measure of the relative distribution of spectral energy from lower to higher fre-
quencies [20]. The proposed features are computed both for the output-speech
signal and for the glottal source signal. Furthermore, the standard deviation of
the fundamental frequency is extracted, since it has been proven to be a good
feature for the separation of stressed and neutral speech [21]. In this study, the
analysis of the extracted features is performed only on the voiced speech areas
which are discriminated using the f0 estimation from the SWIPE algorithm [22].

1 Glottal source signal is the signal generated at the glottis which could be either
periodic pulses or noise.
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4.1 Fundamental Frequency

The fundamental frequency (f0) has been widely used in several studies (e.g.,
[23]) and has proven to be a good indicator for separating stressed from neutral
speech. As already mentioned, in this study, the fundamental frequency is esti-
mated only for the voiced areas using the SWIPE algorithm [22] and its standard
deviation was selected as the feature to be used in the subsequent analysis. The
pitch is searched within a specific range ([70 450] in Herz) and is estimated every
5 ms. The f0 has been normalized in the range [0, 1].

4.2 Spectral Slopes

In estimating the spectral slopes, the voiced areas are isolated using the f0
estimation from the SWIPE algorithm. No estimation is made in the unvoiced
areas, and thus these frames are excluded from the analysis. Then, the magni-
tude spectrum is computed using the Fast Fourier Transform (FFT) with 30 ms
window length and 5 ms overlap. The spectral envelope [24] is subsequently esti-
mated with optimal spectral order computed by � fs

2f0
� (where fs is the sampling

frequency and f0 is the fundamental frequency) normalized in dB. Finally, in
order to compute the spectral tilt, a linear regression line is fitted to the spectral
envelope of the frame using the least square error method and the slope of the
regression line is obtained as a measure for the spectral tilt. The same procedure
is repeated for all voiced segments of each word. The probability density function
(PDF) is computed for each word for the bag-of-slopes extracted (one slope per
voiced frame). Then, the three most probable slopes of PDF histogram are used
as features for the classification. The bin width in the histogram is 0.017 (this
value corresponds to π/180 rad).

Glottal Source Signal. During stressed phonation, a combination of changes
in sub-glottal air pressure can lead to irregular shape of the glottal pulses [25]. In
Fig. 1, the glottal pulses for the stressed speech (angry) and neutral speech are
depicted. In order to estimate the glottal source signal, we employed the Itera-
tive Adaptive Inverse Filtering (IAIF) method [26] using linear prediction for the
estimation of the vocal tract response. The IAIF removes the vocal tract effects
in an iterative manner in order to obtain an accurate estimation of the glottal
source signal. The observed differences are also reflected on the glottal spec-
trum, resulting in increased energy at higher frequency areas. The mean glottal
spectrums and the corresponding spectral tilts, computed on the same voiced
part for each condition, i.e. stressed and neutral, are illustrated in Fig. 2(a), in
which differences can be clearly observed. Based on the observation regarding
the characteristics of the spectrum, feature extraction based on the spectral tilt
of the glottal source spectrum is proposed herein. In Fig. 2(b), the PDF of the
spectral tilt for the voiced tokens of the spoken word /NAV/, for both stressed
and unstressed speech styles are shown. The three highest peaks of the PDF
curves for each word are selected for the classification. Additionally, in Fig. 2(b),
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Fig. 1. Upper panel: a neutral speech segment (blue line) and its corresponding glottal
source (red line). Lower panel: a stressed (angry) speech signal (blue line) and its
corresponding glottal source (red line). Token /a/ is uttered by a male speaker in both
panels, isolated from the word /NAV/. (Color figure online)
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Fig. 2. (a) Solid lines: mean values of the glottal source spectral envelopes. Dashed
lines: corresponding spectral tilts. (b) Probability Density Functions of the glottal
spectral slopes. All information is extracted from the voiced tokens isolated from the
word /NAV/ uttered by a male speaker, for neutral speech (blue solid line), 3 differ-
ent stressed speech styles (red, black, magenta solid lines), and the combined stressed
speech styles (blue dashed line). (Color figure online)

we observe that the PDF curve of the stressed speech is to the right of the neu-
tral curve, which means that the glottal spectrum tilt of the stressed speech is
greater than that of the neutral. Most commonly, if the glottal waveshape is less
smooth, it will have a stronger harmonic structure and a spectral slope closer
to zero [9], as opposed to neutral speech, for which the spectral slope for voiced
frames is typically negative.

Speech Signal. A stressed speaker utilizes a more pronounced and loud voice,
changing the shape of the vocal tract formants. More precisely, in a condition
of stress the location of the formants and their bandwidth are different than
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in neutral speech [21,25]. Also the filter function is excited by the source spec-
trum, resulting in a tilt in the overall spectrum. The stress affects higher fre-
quency regions more than that of the lower frequency regions. Therefore, under
stress conditions, the spectral tilt increases with respect to neutral condition
(Fig. 3(a)). As the spectrum of the speech signal could enhance the glottal spec-
trum information, the speech spectral slope is also prominent for characterization
and classification of stressed speech. The three highest peaks in the PDF curve
(Fig. 3(b)) for each word are used as additional features for the classification.
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Fig. 3. (a) Solid lines: mean values of the speech signal spectral envelopes. Dashed
lines: corresponding spectral tilts. (b) Probability Density Functions of the speech
signal spectral slopes. All information is extracted from the voiced tokens isolated
from the word /NAV/ uttered by a male subject, for neutral speech (blue solid line),
3 different stressed speech styles (red, black, magenta solid lines), and the combined
stressed speech styles (blue dashed line). (Color figure online)

5 Statistical and Classification Analysis

The statistically significant difference between the stressed and neutral PDF
curves, from which the spectrum based features have been extracted, is quan-
tified with the statistical test Mann–Whitney. Figures 2(b) and 3(b), illustrate
this significant difference of the distributions resulting from the spectral tilt of
stressed and neutral speech. Two separate Mann–Whitney statistical tests are
performed. In the first test, the glottal and speech spectral slopes of the neutral
style and the corresponding spectral slopes of all stressed styles are compared
using the statistical test for each speaker individually. The individual differ-
ence of the distributions is statistically significant (p < 0.01). In the second
test, the same statistical test is performed between the neutral and stressed
spectral slopes (glottal and speech slopes separately) for all nine speakers yield-
ing statistically significant differentiation between the distributions (p < 0.01).
Based on the reported findings, the spectral slopes can be characterized as sig-
nificant informative indicators for distinguishing neutral from stressed speech.
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The Random Forests (RF) algorithm [27] is applied in order to evaluate the
performance of the proposed features (three glottal spectral slopes, three speech
spectral slopes, and the standard deviation of the f0), for the discrimination
between stressed and unstressed speech. The RF is an aggregation of decision
trees algorithm. This method is considered as a general technique of decision
trees, and is an ensemble learning method for classification. The main advantage
of the Random Forests algorithm, is that it corrects the decision trees’ tendency
of over-fitting to their training set. More specifically, a text-independent classifi-
cation is performed using all of the 2520 recordings from the SUSAS dataset. For
the evaluation, we apply the Random Forests classification technique, with 1000
decision trees in the ensemble, while the rest of their tuning hyper-parameters
are set to the default values in MATLAB. A 10 times repeated 10-fold cross-
validation is performed, achieving a classification accuracy of 92.06%. This per-
formance is probably an underestimation due to the use of only one specific
classifier [28]. In Fig. 4, an estimation of the importance of each feature for the
accuracy of the classifier is depicted. It is evident that the contribution of three
of the proposed features in the system’s learning is greater than that of the f0’s.
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Fig. 4. Proposed features are denoted with the labels glottal#1, glottal#2, glottal#3,
speech#1, speech#2, speech#3 (glottal#n are the 3 most probable glottal spectral slopes
provided by the PDF histogram and speech#n the corresponding speech spectral slopes)
and with F0 the f0 std.

6 Conclusion

This study focuses on separating the neutral from stressed speech, using fea-
tures estimated on the frequency domain. More specifically, the features used
are the three most probable slopes of the speech spectrum provided by the PDF
histogram, the corresponding three slopes of the glottal spectrum, and the stan-
dard deviation of the f0. These features are extracted for the voiced segments
of each word in the dataset and not for specific tokens. The main advantage of
the proposed features is that they cannot be easily manipulated for concealing
stress, in contrast to the most commonly used features in similar studies, e.g.,
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overall intensity and pitch, which can be voluntarily controlled. Therefore they
form the basis for a more objective estimation method. Furthermore, it is not
sufficient to deal only with the overall intensity, since a shift of the intensity
over the spectrum is observed when more effort is made for the speech produc-
tion. This shift is apparent on the spectral tilt. In this study, the classification
performed using the metrics based on spectral tilt and f0 was text-independent
achieving an accuracy score of 92.06%. As a result, our main conclusion is that
these metrics are capable of distinguishing the two speaking styles with great
success.

Future work will focus on extended data analysis by testing different classi-
fiers, on applying the proposed features on datasets with stressed and neutral
recordings under real conditions and on evaluating the detection accuracy by
combining these speech features with visual features, in an analysis approach
similar to the one in [29].
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