
A New Look at an Old Attack: ARP Spoofing
to Create Routing Loops in Ad Hoc Networks

J. David Brown(✉) and Tricia J. Willink

Defence R&D Canada, Ottawa, Canada
{david.brown,tricia.willink}@drdc-rddc.gc.ca

Abstract. This paper examines a new application of the well-known ARP
spoofing (or ARP cache poisoning) attack. Traditionally, ARP spoofing has been
applied in local area networks to allow an attacker to achieve a man-in-the-middle
position against target hosts, or to implement a denial of service by routing
messages to non-existent hardware addresses. In this paper, we introduce a variant
of ARP spoofing in which a routing loop is created in a target wireless ad hoc
network. The routing loop not only results in a denial of service against the
targeted hosts, but creates a resource consumption attack, where the targets waste
power and occupy the channel, precluding its use by legitimate traffic. We show
experimental results of an implementation and provide suggestions as to how to
prevent, detect, or mitigate the attack.

Keywords: Denial of service · ARP spoofing · Ad hoc networks
Sensor networks · Routing loops · Resource consumption · DoS defences

1 Introduction

ARP cache poisoning, or ARP spoofing, is a well-known network attack technique
against local area networks (LANs) in which an attacker sends spoofed Address Reso‐
lution Protocol (ARP) messages to one or more target hosts. ARP spoofing can be
performed as the first step in a larger attack, where the end goal of the attacker could be
to achieve a man-in-the-middle position between two hosts or to cause a denial of service
(DoS) against one or more hosts. The Address Resolution Protocol is vulnerable to
spoofing because ARP messages include no authentication (see RFC 826, and updates
in RFC 5227, 5494 [1–3]) and thus any host connected to the target network can emit
an ARP request or response purporting to come from another host. This technique has
been recognized for nearly 20 years, and it remains an area of interest as evidenced by
continued activity in the security community, examining techniques to detect it and
mitigate it—see for instance [4–7].

While ARP spoofing is usually discussed in the context of wired LANs, it is arguably
more damaging—and easier to perform—in wireless ad hoc networks, where hosts are
expected to leave and join frequently, the physical communication medium is easily
accessible, and there is no central entity for security co-ordination; [14] enunciates the
devastating effects of ARP poisoning on ad hoc networks. The “gold standard” of
protection against ARP spoofing—namely, hard-coding the MAC and IP address pair

© Her Majesty the Queen in Right of Canada 2018
Y. Zhou and T. Kunz (Eds.): AdHocNets 2017, LNICST 223, pp. 47–59, 2018.
https://doi.org/10.1007/978-3-319-74439-1_5

associations in each host—is impractical for many ad hoc network use cases, since it is
often the case that the complete set of hosts that participate in an ad hoc network is not
known a priori. Other existing defences against ARP spoofing rely on making modifi‐
cations to existing protocols [15]; employing schemes or tools that perform passive
monitoring of traffic or internal system parameters [8, 9]; or modifying operating system
(OS) configurations. Although these defences are simple and practical, the reality is that
they are often not implemented, leaving networks vulnerable [10]. As ad hoc networks
become increasingly pervasive—in applications including sensor networks and for
devices residing on the “Internet of Things”—it is likely that many of these networks
will be developed and deployed without such defences in place since the driver for many
industries will be in developing devices of low cost, low complexity, and interopera‐
bility. In fact, although it has been pointed out that ARP is not truly suited to ad hoc
networks [11], the protocol will no doubt continue to be used in many implementations
despite competing suggestions and algorithms.

In this paper, a novel use of the ARP spoofing technique is presented that can create
a powerful DoS attack against a target ad hoc network. An attacker injects spoofed ARP
packets into the ad hoc network such that a “routing loop” is formed between two or
more hosts; as a result, an IP packet directed through any of the affected hosts oscillates
“forever” in a loop—or until the packet’s time to live (TTL) expires. In this fashion, the
attacker exerts relatively little effort (in terms of power resources) but creates a situation
where the target network exhausts its own resources and floods the shared wireless
channel. The attack is unique to ad hoc networks and does not port directly to the wired
case, since in an ad hoc network all hosts on a common subnet can act as routers as well
as endpoints, thus presenting the opportunity for creating routing loops among the hosts
themselves. This is different from the standard set of ARP spoofing attacks, which
generally force hosts to route through the attacker (creating a man-in-the-middle) or
direct hosts to route to non-existing addresses (see [14]). While directing a host to a non-
existing address results in a link failure (and a DoS against the host), the attack proposed
here causes hosts to continue transmitting duplicate copies of packets—effectively
depleting battery life and consuming channel resources, thus denying them to other non-
targeted hosts.

The remainder of the paper is organized as follows. In Sect. 2, a brief review of the
standard ARP spoofing attack is provided followed by a walk-through of a simple
example of the new ARP-route-looping attack. Section 3 discusses how the ARP-route-
looping attack could be applied to ad hoc networks in general, and identifies required
topology pre-conditions that target networks must satisfy in order to allow for a
successful effect. Section 4 provides the results of an experiment conducted on an ad
hoc network comprised of Android smartphones, showing the effect of ARP-route-
looping in a real-world scenario. Finally, Sect. 5 provides suggested defences and miti‐
gations against the attack, with concluding remarks in Sect. 6.

48 J. D. Brown and T. J. Willink

2 The ARP-Route-Looping Attack

This section describes the ARP-route-looping attack by looking at a simple walk-
through example. First, a brief description of traditional ARP spoofing is provided.

2.1 Traditional ARP Spoofing

Consider a simple IP network of two hosts, Alice and Bob, where Alice and Bob
communicate over a wireless interface. When Alice sends a message to Bob, the message
consists of a packet containing Bob’s network IP address, denoted here as IPB. As the
packet travels down Alice’s protocol stack, Alice’s OS adds a hardware (or MAC)
address for Bob, denoted here as MACB. Alice’s OS obtains Bob’s MAC from the local
ARP cache, which contains a mapping of IPs to MACs for the hosts in the network. If
the ARP cache does not contain an entry for Bob, Alice must broadcast an ARP request
and wait for Bob’s ARP reply (which contains MACB). In a traditional ARP spoofing
attack, an attacker (Eve) sends spoofed ARP reply messages into the network to mislead
Alice and Bob about the mappings of IPs to MACs.

In this scenario, Eve sends ARP spoofing messages to Alice indicating that Bob has
hardware address MACE: Eve’s MAC address. We use the notation Tx(E, A, <IPB,
MACE>) to denote that Eve (host hE) sends a message to Alice (host hA), where the
message consists of an ARP spoof mapping IPB to MACE. Likewise, Eve sends Tx(E,
B, <IPA, MACE>), indicating to Bob that Alice has hardware address MACE. Thus,
Alice unwittingly sends traffic destined for Bob to MACE (and Bob sends traffic for Alice
to MACE). Even in a wireless setting where Alice and Bob can hear all the traffic in the
network, they will not process frames addressed to MACE (and will only process frames
addressed to their own MAC addresses). Thus, once the poisoning is complete, Eve acts
as a relay for all traffic between Alice and Bob and can modify, re-route, or drop packets
as desired.

2.2 A Simple Example of ARP-Route-Looping

The ARP-route-looping attack is easily explained using a simple example. Consider an
ad hoc network of four hosts (A, B, C and D), which we denote as hA, hB, hC, and hD. In
this example, the ad hoc network is a complete graph, meaning that every host is within
range of every other host. Thus in the absence any disruptions, all hosts can communicate
with one another directly (i.e., without requiring multi-hop routes). The simple network
is depicted in Fig. 1, where links are shown as light blue lines.

A New Look at an Old Attack 49

A’s ARP Cache
IPB <----> MACB MACC

A B

C

D

C’s ARP Cache
IPB <----> MACB MACD

D’s ARP Cache
IPB <----> MACB MACC

Tx(E, A, <IPB, MACC>)
Tx(E, C, <IPB, MACD>)
Tx(E, D, <IPB, MACC>)

EVE

Fig. 1. An example ARP-route-looping attack. (Color figure online)

Suppose an attacker, Eve, wants to disrupt communication between hA and hB using
ARP-route-looping. Initially, hosts hA, hC, and hD all have direct routes to hB, along with
ARP caches correctly mapping IPB to MACB. First, Eve sends Tx(E, A, <IPB, MACC>)
to hA, poisoning the ARP cache of hA such that the MAC of hC is associated with the IP
for hB. Thus, whenever hA wants to send any unicast messages to hB, hA will address the
messages with the IP address of hB, but the MAC address of hC. Next, Eve sends Tx(E,
C, <IPB, MACD>), poisoning the ARP cache of hC such that all traffic from hC intended
for hB will be sent to hD. Finally, Eve sends Tx(E, D, <IPB, MACC>), poisoning the ARP
cache of hD such that all traffic from hD intended for hB will be sent to hC.

Eve’s activities are now finished and the conditions for ARP-route-looping have
been set. Consider the following steps that inform the flow of a unicast packet that hA
sends to hB in this scenario:

1. hA constructs a packet and inserts the IP address for hB;
2. hA consults its routing table and determines that it has a direct route to hB;
3. hA adds the MAC address for hB to the packet; hA consults its ARP cache to determine

the MAC address for hB;
4. hA inserts the (poisoned) entry MACC and sends the packet;
5. hC receives the packet, examines the IP address and finds that the packet is destined

for hB; since the network is ad hoc, hC has an IP-forwarding capability and so
forwards the packet to hB (the intended destination according to the IP address);

6. hC has a direct link to hB according to its routing table, so it must update the MAC
address with the entry for hB before forwarding the packet; hC consults its ARP cache
for the MAC of hB and inserts the (poisoned) entry MACD, then forwards the packet;

7. hD receives the packet, examines the IP address and finds that the packet is destined
for hB and so forwards the packet to hB;

8. hD consults its ARP cache to determine the MAC address for hB and inserts (pois‐
oned) entry MACC.

At this point, the cycle repeats and returns to step 5, with hC once again receiving
the packet. The packet will continue to cycle between hC and hD until the TTL counter
for the packet reaches zero. This not only creates a DoS between hosts hA and hB, but

50 J. D. Brown and T. J. Willink

also creates a situation where hC and hD occupy the channel (precluding legitimate usage)
and exhaust resources by transmitting duplicate packets in a loop.

When the TTL expires, hD sends an ICMP time exceeded message to hA (the source
of the initial packet), which indicates that the TTL field in the IP header has reached
zero. If desired, Eve can set conditions such that this ICMP message follows a routing
loop as well, making it loop between hosts hC and hB until its own TTL reaches zero.

3 Generalized ARP-Route-Looping in Ad Hoc Networks

The ARP-route-looping attack was introduced in Sect. 2 for a specific example network.
This section describes the technique in general terms and discusses how to determine
which hosts to poison and what content to place in the spoofing messages.

3.1 Notation and Assumptions

We begin by introducing additional notation to describe the general ARP-route-looping
attack. Consider a network of n hosts, where the network is represented as a graph. If
an edge exists between any two hosts, hi and hj, they are “neighbours”. The neighbour-
set of any host hi is denoted by N(i), and consists of the set of all neighbours of hi. Note
that sets are denoted with bold italicized typeface, and hosts in a set are denoted by their
indices for simplicity (e.g., we write {A} instead of {hA}). In the network from Fig. 1,
for instance, N(C) = {A, B, D}. We denote the relative complement of a set N(i) and a
set of hosts H by N(i)\H: this is the set of hosts in N(i) excluding the hosts in H. So, for
instance, in Fig. 1, N(C)\{A, B} = {D}.

We say there is a route or path between two hosts, hi and hj, if there exists a sequence
of edges in the graph connecting hi and hj through some set of vertices. Assuming the
network employs a shortest-path routing algorithm, we denote by r(i, j) the first host
(after hi) along the route from hi to hj. In cases where there is more than one possible
shortest path and r(i, j) could have multiple values, for simplicity we select the host with
the lowest index.

We remark that to achieve ARP-route-looping, the attacker must transmit a series of
ARP spoofing messages to various hosts in the network. In a geographically diffuse ad
hoc network it is possible that a single attacking node would be insufficient to reach all
target hosts. For the purposes of this paper, however, we assume all spoofing packets
arise from a single attacker, Eve, where it is understood that this may in fact consist of
multiple co-ordinated transmitting stations. Furthermore, we assume that Eve has
knowledge of the adjacency matrix of the graph representing the network—that is, Eve
can compute which hosts are neighbours and can compute the shortest path routes
between hosts in the network. Admittedly, in a dynamic network, this knowledge may
be challenging to achieve; one possible strategy is for Eve to observe routing control
messages and attempt to infer the adjacency matrix from these.

Finally, we note that any routing loop will terminate if the looping packet arrives at
either the originator of the packet (since a host will not forward a packet for which it is

A New Look at an Old Attack 51

identified as the source IP address) or the intended destination for the packet. Thus, in
creating an ARP-route-loop both of these hosts must be avoided.

3.2 Two-Host Loops

Consider a network of n hosts, where Eve wants to implement ARP-route-looping
against messages sent from hA to hB. The simplest loop is one that involves only two
hosts (neither of which is hA or hB). An ARP-route-looping attack can be mounted in
this case if the following condition holds:

∃i ∈ N(A)∖{B} such that N(i)∖{A, B} ≠ ∅. (1)

Condition (1) says that for two-node looping to be possible there must exist a host,
hi, that is a neighbour of hA, but is not equal to the destination hB; furthermore, hi must
have at least one neighbour that is equal to neither hA nor hB. When this condition is
satisfied, we denote by hj a node in the (non-empty) set N(i)\{A, B}. To create an ARP-
route-loop, Eve can send out the following three ARP spoofing messages: Tx(E, A,
<IPr(A,B), MACi>), Tx(E, i, <IPr(i,B), MACj>), Tx(E, j, <IPr(j,B), MACi>). For hosts hA,
hi, and hj, these spoofing messages associate the IP for the next hop on the route to hB
with a poisoned MAC address. Eve’s work is done and a routing loop is created between
hosts hi and hj.

3.3 Loops with More Than Two Hosts

Although a loop with only two hosts is sufficient to perform ARP-route-looping, Eve
may be interested in creating a situation where a message from hA to hB is looped among
more than two hosts. This could have the effect of wasting the resources of more hosts
in the network, and in the case of a geographically diffuse network an attacker may wish
to occupy the channel over a larger geographic area by involving more hosts in the loop.

Ultimately, to achieve a multi-host loop attack involving k hosts (k > 2), Eve needs
to identify a path in the graph originating at host hA that contains a loop of k hosts, where
host hB is not part of the path. Finding loops, or cycles, in graphs is a well-studied
problem—see, for instance, [12] and references therein. Although some optimizations
to the problem exist in certain cases, for small graphs a brute force search is simple and
not onerous to implement. A recursive brute force algorithm that Eve can use to find an
appropriate cycle of length k is provided below in Algorithm 1, which is reminiscent of
a depth-first search algorithm (e.g., [13]) with minor alterations. Note that a priori, Eve
does not know whether the network contains a loop of length k and thus would run
Algorithm 1 for all values k of interest.

52 J. D. Brown and T. J. Willink

Algorithm 1: LoopSearchk(i)

1: push(S, i)
2: If S contains a loop of length k then
3: EXIT sequence of hosts in S is desired answer
4: Else
5: Current = N(i) \ {A, B, S\kth-last)}
6: If (Current = ∅) or (LoopSearchk completed for all elements in Current)
7: pop(S); return
8: Else
9: For each element j in Current
10: LoopSearch_k(j)
11: End For
12: End If
13: End if
14: End

Algorithm 1 includes the concept of a stack, which represents an ordered sequence
of hosts—we denote the stack as a vector, S (where we denote vectors using bold and
underlining). The operator push(S, i) means to add host hi as the last element of vector
S, and the operator pop(S) means to remove the last element of vector S. When the stack,
S, is used as part of a set, as in C = {A, B, S}, the meaning is that all hosts in the stack
are to be included in C. When we write “S\kth-last”, this refers to all hosts in S except
the kth-last element. To find a loop of length k for a message sent by hA to hB, we start
with an empty stack (i.e., S = []) and run LoopSearchk(A). Upon completion, either
LoopSearchk(A) will terminate with an empty stack (and the network contains no loop
of length k) or LoopSearchk(A) will terminate with a non-empty stack, where S contains
the sequence of hosts containing a length-k loop for traffic originating at hA.

At a high level, Algorithm 1 works as follows. When LoopSearch is called for any
host hi, the host is pushed onto the stack. Then we check if the stack in its current form
contains a loop; if so, we are done. If not, we recursively run LoopSearch again for all
the neighbours of hi, unless those neighbours are A, B, or other values currently in S
except for the kth-last value in S (because we do not want to find any loops in the network
except loops of length k). Running LoopSearch in this fashion and excluding A, B, and
S is a generalization of condition (1) for the k-loop case. Running LoopSearch on hA
searches for a path containing a cycle, where the path originates at host hA. As an
example, running LoopSearch4(A) on the graph in Fig. 2 provides the output: S = [A, 4,
5, 6, 7, 9, 0, 6], identifying the 4-host loop among h6, h7, h9, and h0.

Once Eve has determined a sequence of hosts containing a loop of length k, ARP
spoof packets can be crafted and sent. Consider that Eve has run Algorithm 1, which
returned a vector of hosts, S, where S contains m elements. In this case, Eve can craft
(m – 1) ARP spoof messages as follows:

Tx(E, S
i
,< IP

r(S
i
, B), MAC

S(i+1) >), ∀ i ∈ [1, (m − 1)], (2)

A New Look at an Old Attack 53

where Si corresponds to the ith host appearing in vector S. Thus, to the ith host in S, Eve
sends a spoofed message that maps the IP of the next host en route to hB as corresponding
to the MAC of the (i + 1)st host in S.

4 Experimental Results

To evaluate the effect of ARP-route-looping on an ad hoc network, we built a test
network using Android smartphones (specifically, we used Nexus 5 model smartphones
running the Cyanogenmod 13 Android-based operating system). The phones were
configured to support ad hoc networking and multi-hop IP forwarding. We constructed
the network shown in Fig. 3, where hosts hA and hB communicate via a multi-hop route
through h1 and h2. The hosts in the network ran the optimum link state routing (OLSR)
protocol to compute their neighbours and routes. To examine network traffic, we used
a laptop running Wireshark in monitor mode as a packet sniffer.

A B

3

21
IPA: …10.100
MACA: … bd:6a

IP1: …10.10
MAC1: … 9e:ce

IP2: …10.11
MAC2: … ea:27

IPB: …10.101
MACB: … df:ec

IP3: …10.12
MAC3: … a1:d1

Fig. 3. Experimental network consisting of Android ad hoc hosts; the last two octets of the IPs
and MACs are shown for each host.

In this scenario, we examined the ability of ARP-route-looping to disrupt commu‐
nications from hA to hB; to target multiple hosts, we applied Algorithm 1 to find a 3-host
loop, yielding S = [A, 1, 2, 3, 1] (in this case, of course, we could have found the loop
by inspection). To create ARP-route-looping in the network, we sent ARP spoofing
messages as follows, based on Eq. (2): Tx(E, A, <IP1, MAC1>), Tx(E, 1, <IP2, MAC2>),
Tx(E, 2, <IPB, MAC3>), Tx(E, 3 <IP2, MAC1>).

A
B

0

9

87

6

5
4

3

2

1

Fig. 2. Finding a loop of length k = 4 in a general graph with Algorithm 1.

54 J. D. Brown and T. J. Willink

We expected the spoofing messages to create a routing loop such that all traffic sent
from hA to hB would cycle around in a loop of hosts h1, h2, and h3 until the TTL of the
packet expires. Figure 4 shows a screen capture of our Wireshark packet sniffer when a
single ICMP ping is sent from hA to hB in the presence of ARP-route-looping. In reading
the figure, note that IPA = 192.168.10.100 and IPB = 192.168.10.101; for reference,
MAC addresses of the hosts in the network are shown in Fig. 3. The single ping from
hA can be seen looping continuously among three hosts (note the MAC addresses in the
Wireshark capture). Eventually—after 64 packets have been forwarded around the loop
—the TTL of the packet expires and we see the ICMP TTL exceeded message returned
to hA. Not shown in Fig. 4 is the fact that we could have also simultaneously poisoned
hB, h1, h2, and h3 creating a situation where the ICMP TTL exceeded message itself is
looped 64 times among hB, h2, and h3.

Fig. 4. Wireshark display showing the effect of ARP-route-looping on a ping from hA to hB

While the looping of a single ping message is an interesting curiosity, the serious
potential detrimental effects of ARP-route-looping are shown in Fig. 5. In our test
network, we examined a scenario where host hA streams UDP traffic at a rate of 10 kB/s
to hB. Before ARP spoofing, the traffic is delivered and the load on the network (i.e., the
total number of UDP packets transmitted in the network) is seen to be approximately 15
packets per second—the blue curve in Fig. 5. After creating a 3-host ARP-route loop
(among h1, h2, and h3), the load on the network increases to an average of approximately
305 packets per second—the red curve in Fig. 5. Clearly, in this case ARP-route-looping
has created a situation where hosts h1, h2, and h3 expend considerably more energy and
occupy the channel for a considerably greater period of time than if the loop were not
present.

A New Look at an Old Attack 55

Fig. 5. Packet rate observed for UDP traffic from hA to hB with and without ARP-route-looping.
(Color figure online)

In general, for an ARP-route-looping attack against host hA sending to hB, we expect
the packet rate (of affected traffic) to increase by a factor of μ, which we call the traffic
multiplication factor. For the UDP example considered here, μUDP is computed as
follows:

μUDP =
(
TTLinit + 1

)/
(dim(R(A, B)) − 1). (3)

Here, TTLinit is the initial time-to-live value for IP packets generated in the network,
R(A, B) is a vector containing the hosts along the shortest-path route from host hA to host
hB, and dim(R) is the number of elements in vector R. The numerator contains a “plus
one” to account for the additional packet required for the ICMP TTL exceeded message
returned to hA; in the case where ARP-route-looping is also implemented against the
return message ICMP TTL exceeded message, then (TTLinit + 1) is replaced by
(2·TTLinit).

In our test case, R(A, B) = [A, 1, 2, B] and TTLinit = 64. Thus we compute μUDP,expected
= (64 + 1)/(4 − 1) = 21.7. In our UDP example in Fig. 5, we measure the traffic multi‐
plication factor as μUDP,observed = 305 fps/15 fps = 20.3, which is quite close to our
expectation.

Finally, we note that Eq. (3) does not account for any return traffic or acknowledge‐
ments in computing the denominator. This is valid for the UDP traffic streams considered
in Fig. 5; for an ICMP ping, however, we would expect the denominator to be doubled
since each ping request results in a ping reply; thus

μping =
(
TTLinit + 1

)/
(2 ⋅ (dim(R(A, B)) − 1)). (4)

For TCP, the effect is more complex since it depends at what stage in the TCP session
the ARP-route-loop is established. If an ARP-route-loop is created before hA and hB

56 J. D. Brown and T. J. Willink

begin a TCP session, then the session is precluded from starting since the initial SYN
from hA will loop in the network without ever reaching hB. If the session is already
established, then TCP traffic—along with myriad retries—will loop among h1, h2, and
h3 without ever being delivered to hB.

5 ARP-Route-Looping Defences

In this section, we briefly outline a few common defences against ARP spoofing, and
introduce new mitigations specific to ARP-route-looping.

5.1 Prevention

Since the ARP protocol includes no authentication, other means are needed to prevent
an ARP spoofing attack. Well-known methods are listed below.

• Hard-code fixed ARP tables: For all hosts in the network, permanently fix the IP and
MAC address mappings and do not use ARP messages. While effective, this may be
impractical depending upon the network deployment.

• Dynamic ARP inspection and DHCP snooping: This is a service available on certain
switches and validates ARP messages based on previous DHCP assignments. This
is not a realistic solution for an ad hoc network, whose hosts likely do not support
the service, nor does the network likely utilize a central switch that could drop ARP
messages, and it may not employ DHCP.

• Employ a non-standard protocol that includes authentication, e.g., S-ARP [15].
• Do not use ARP: This is a tautological statement, in that by avoiding ARP it is

possible to avoid inherent security problems with ARP. For ad hoc networks,
however, this is a legitimate and important option; it has been identified in [11] that
other techniques should be explored for address resolution.

5.2 Detection

Existing tools such as ARP Watch [8] and ARP Guard [9] allow network administrators
to gather a log of IP-MAC address pairs and perform a forensic analysis to determine if
ARP spoofing has taken place. These systems identify when IP-MAC pairs have changed
and can flag or alert an administrator when this occurs. For unattended ad hoc networks,
such systems would provide a means for after-action analysis, but may not be helpful
while the attack is occurring. For the specific case of an ARP-route-looping attack in an
ad hoc network, we propose the following detection schemes.

• Record/flag duplicate packets: If a host observes that it is forwarding a duplicate
packet (i.e., one it has already forwarded), where everything is unchanged with the
exception of having a smaller TTL value, this is a strong indication that the host is
part of a routing loop. If this behavior is observed over and over again during a short
time span, it is all but confirmed.

A New Look at an Old Attack 57

• Detect duplicate MAC addresses in the ARP cache: If the ARP cache contains two
or more different IP addresses corresponding to the same MAC address, this is a red
flag in an ad hoc network and may be suggestive that an attacker is attempting to
misdirect traffic along unintended routes.

5.3 Mitigation

As noted above, in an ad hoc network without an administrator actively monitoring
network health, simply detecting an ARP spoofing attack is not enough—hosts must be
able to take action or have methods in place to mitigate the attack as well. For the specific
case of ARP-route-looping, we propose two possible mitigation strategies.

• Reduce the default TTLinit: By Eq. (3), if we reduce the initial TTL for packets
generated in the network, we in turn will reduce the traffic multiplication factor, μ,
thus dampening the severity of the attack. In an ad hoc network with n hosts, if all
traffic is expected to be limited to the local network then it is reasonable to set the
initial TTL value to n (or less), since packets should not hop through any host more
than once. Note that this solution is only practical, however, if it is not expected that
traffic will travel outside the ad hoc network.

• Drop duplicate packets: Further to the detection strategy proposed above, not only
could hosts detect duplicate packets (where only the TTL value changes), but hosts
could drop duplicates when they are seen. This still will not restore connectivity
between hA and hB, but it will reduce the severity of the resource depletion and channel
occupancy.

6 Conclusion

This paper introduced a new application of ARP spoofing that creates routing loops in
an ad hoc network, such that hosts in the network continuously forward packets around
the network without the packets ever reaching their intended destination. This so-called
ARP-route-looping results in hosts depleting their resources—i.e., a resource consump‐
tion attack—and increases channel occupancy in the network. In essence, the hosts are
misled into a situation where they deny access to the network and resources to one
another by amplifying existing network traffic. This is different from typical ARP
spoofing attacks, which are often intended to create a man-in-the-middle situation, a
situation where traffic is simply dropped, or an ARP flooding situation where the attacker
must expend considerable resources.

In this paper we discussed that in ad hoc networks, where every host acts as an
endpoint as well as a router, ARP spoofing remains a serious concern and in fact leaves
open another vulnerability: ARP-route-looping. While there are many well-known
defences against ARP spoofing attacks, unfortunately these are often not implemented.
In addition to these well-known preventative techniques, we proposed additional miti‐
gation strategies specific to ARP-route-looping. We hope that this new application will
further emphasize the importance of taking steps to avoid this common, yet avoidable,
vulnerability.

58 J. D. Brown and T. J. Willink

References

1. Plummer, D.C.: An Ethernet address resolution protocol. RFC 826, November 1982 (1982).
http://tools.ietf.org/html/rfc826

2. Cheshire, S.: IPv4 address conflict detection. RFC 5227, July 2008 (2008). http://tools.
ietf.org/html/rfc5227

3. Arkko, J., Pignataro, C.: IANA allocation guidelines for the address resolution protocol
(ARP). RFC 5494, April 2009 (2009). http://tools.ietf.org/html/rfc5494

4. Mangut, H.A., Al-Nemrat, A., Benzaid, C., Tawil, A.H.: ARP cache poisoning mitigation
and forensics investigation. In: Proceedings of 14th IEEE International Conference on Trust,
Security, Privacy in Computing and Communications, Helsinki, Finland (2015)

5. Yang, M., Wang, Y., Ding, H.: Design of WinPcap based ARP spoofing defense system. In:
Proceedings of 2014 Fourth International Conference on Instrumentation and Measurement,
Computer, Communication and Control, Harbin, China (2014)

6. Jinhua, G., Kejian, X.: ARP spoofing detection algorithm using ICMP protocol. In:
Proceedings of 2013 International Conference on Computer Communication and Informatics,
Coimbatore, India (2013)

7. Salim, H., Li, Z., Tu, H., Guo, Z.: Preventing ARP spoofing attacks through gratuitous
decision packet. In: Proceedings of 11th International Symposium on Distributed Computing
and Applications to Business, Engineering and Science, Washington DC, USA (2012)

8. LBL Network Research Group, Information and Computing Sciences Division, at Lawrence
Berkeley National Laboratory, ARP Watch. http://www.securityfocus.com/tools/142

9. ISL, ARP-Guard. https://www.arp-guard.com/en/arp-guard/product.html
10. Zdrnja, B.: Malicious JavaScript insertion through ARP poisoning attacks. IEEE Secur. Priv.

7, 72–74 (2009)
11. Carter, C., Yi, S., Kravets, R.: ARP considered harmful: manycast transactions in ad hoc

networks. In: Proceedings of 2003 IEEE Wireless Communications and Networking,
New Orleans LA, USA (2003)

12. Birmelé, E., et al.: Optimal listing of cycles and st-paths in undirected graphs. In: Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans
LA, USA (2013)

13. Shaffer, C.A.: A Practical Introduction to Data Structures and Algorithm Analysis. Virginia
Tech, Blacksburg (2010)

14. Sadhir, G., Hu, Y., Perrig, A.: ARP attacks in wireless ad hoc networks (2003). http://
dl.icdst.org/pdfs/files/0d65ca5916c99a18d087bad19f6d1d0d.pdf

15. Bruschi, D., Ornaghi, A., Rosti, E.: S-ARP: a secure address resolution protocol. In:
Proceedings of the 19th Annual Computer Security Applications Conference (2003)

A New Look at an Old Attack 59

http://tools.ietf.org/html/rfc826
http://tools.ietf.org/html/rfc5227
http://tools.ietf.org/html/rfc5227
http://tools.ietf.org/html/rfc5494
http://www.securityfocus.com/tools/142
https://www.arp-guard.com/en/arp-guard/product.html
http://dl.icdst.org/pdfs/files/0d65ca5916c99a18d087bad19f6d1d0d.pdf
http://dl.icdst.org/pdfs/files/0d65ca5916c99a18d087bad19f6d1d0d.pdf

	A New Look at an Old Attack: ARP Spoofing to Create Routing Loops in Ad Hoc Networks
	Abstract
	1 Introduction
	2 The ARP-Route-Looping Attack
	2.1 Traditional ARP Spoofing
	2.2 A Simple Example of ARP-Route-Looping

	3 Generalized ARP-Route-Looping in Ad Hoc Networks
	3.1 Notation and Assumptions
	3.2 Two-Host Loops
	3.3 Loops with More Than Two Hosts

	4 Experimental Results
	5 ARP-Route-Looping Defences
	5.1 Prevention
	5.2 Detection
	5.3 Mitigation

	6 Conclusion
	References

