
Evaluation on UiTiOt Container-Based
Emulation Testbed

Chuong Dang-Le-Bao, Nhan Ly-Trong, and Quan Le-Trung(&)

Department of Computer Networks, University of Information Technology,
Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam

{chuongdlb,nhanlt,quanlt}@uit.edu.vn

Abstract. In this paper, we present a container-based emulation testbed, namely
UiTiOt. The testbed integrated a well-known wireless emulation tool called
QOMET to imitate the wireless network models over established wired network.
Our testbed was developed based on a state-of-the-art technology called
container-based virtualization. With our proposed design, we aim to provide
researcher with the capability of running large-scale wireless/IoT experiments at
affordable cost. Therefore, we did an insightful evaluation to ensure the feasibility
and accuracy of the implementation of UiTiOt testbed. The evaluation includes
several test-cases with different network topologies and routing protocols.

Keywords: Network architectures � Network evaluation
Container-based emulation � Network testbed

1 Introduction

As the trend of Internet of Things (IoT) continues to thrive in recent years, where the
number of connected devices will reach 20.8 billions in 2020 [1] and leads to rapid
movement in development of modern network protocols and standards. It is necessary
to test the new device functionality in both hardware and software aspects before mass
production. However, there has been a challenge to setup hundred-node or
thousand-node in real-world scenarios because one has to consider a number of factors
such as geographical position, mobility, transmit power and the budget to afford real
devices. Since the simulation only solved the large-scale experiment in theoretical
model where many environmental variables would be assumed or randomly set like
node mobility, communication range or propagation loss, and in addition it was unable
to execute in real-time like real-world testbed as illustrated in Table 1 [2].

Our work [3] has proposed a wireless/IoT Emulation Testbed based on container-
based virtualization and QOMET, a wireless network emulation set of tools that made
the wired-network adaptable for wireless network experiment. In our testbed system,
each node in experimental scenario is represented by a container, which a simple
Linux-runtime process that encapsulate user-namespace and relevant binaries and
libraries to form a thinner Operating System-like environment. By implementation, we
proved the proposed design’s feasibility and usability, but we have yet to perform any
further evaluation on its performance. Hence in this paper, we focus on evaluating the
performance of our emulation testbed, namely UiTiOt through many test-cases

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
Y. Chen and T. Q. Duong (Eds.): INISCOM 2017, LNICST 221, pp. 57–66, 2018.
https://doi.org/10.1007/978-3-319-74176-5_6



with different set of parameters. Instead of using OpenStack as underlying infras-
tructure [3], we setup small scale setup by using VMware virtual machines running on
a high-performance laptop. By doing this, we possibly remove any underlying network
constraints which had occurred in previous work [3], where traffic flows between
containers would be routed to unwanted path despite our configuration. Our paper is
organized as follows: the first section is the introduction, Sect. 2 discuss related
research in emulation testbed and container-based virtualization, Sect. 3 revisits the
architecture of our testbed design, Sect. 4 shows the experimental results of perfor-
mance evaluation and followed by a conclusion.

2 Related Work

Testbed especially the emulation testbed systems has been playing an important role in
development and evaluation of wireless protocols and application. Recent research has
shown the advantages of emulation testbed, for instance EmuStack [4] which based on
OpenStack and Docker showed the efforts of building a distributed emulation testbed
for Delay Tolerant Network (DTN) at a reasonable cost, but no large-scale evaluation
has yet been addressed. In addition, QOMB [2] which derived from a general-purpose
wireless network test bench StarBED [5], which is large-scale testbed infrastructure
comprised of physical computer nodes and network hardware. QOMB and related
research and emulation experiments on StartBED system has proven the its efficiency
and usability in the field of wireless network experiment but still required a large
budget to develop and operate. In addition, recent work of [6] has proposed an emu-
lation testbed based on OpenStack Cloud where an experiment node substituted by a
virtual machine instance. On each experiment node of QOMET [7], the emulation
process would be executed on-the-fly to mimic the wireless behavioral communication
over the top of wired network setup. In recent year, container-based virtualization has
embarked most aspects of software production in general. Though, many have utilized
the advantages of container technology to apply in their research, most used it as an
alternative for VM to deploy large-scale network experiment such as reproducing
popular network experiments while others used container-based virtualization for
Information-Centric Networking (ICN) [8] testbed or even in high-performance com-
puting [9] and ubiquitous computing. Recent research [10] has shown the impressive
performance of container technology in cloud context which outperform virtual
machines and nearly the same as native performance.

Table 1. Comparison of wireless testing techniques

Simulation Real world Emulation

Real-time execution No Yes Usually
Control level High Low High
Condition range Large Small Large
Result realism Low High Medium
Experimentation cost Low High Medium
Ease of use High Low Medium

58 C. Dang-Le-Bao et al.



3 Architectural Design

Our testbed system was created by integrating a well-known wireless emulator
QOMET into a virtual container, also known as container-based virtualization tech-
nique [11]. In a brief, container-based virtualization is a lightweight alternative to the
hypervisors, also known as Operating System (OS) Level virtualization. In
container-based virtualization, physical resources of one machine are divided into
multiple isolated user-space instances called containers. This can be achieved by using
a feature of the Linux kernel called kernel namespaces, which allow different processes
to have different view on the system, network-namespace feature can also be used to
enable network virtualization. The container-based virtualization is basically a piece of
software that works at the OS-level, providing abstractions directly for the guest
processes. Since it works at OS-level, all virtual containers share the same Linux kernel
with the host operating system, hence will have weaker isolation in comparison with
hypervisor-based virtualization. However, each container behaves exactly like a
stand-alone OS from the user’s perspective. In our system, we used Docker [12], the
state-of-art software that extended LXC [13] (Linux container – the most popular
implementation of virtual container).

3.1 Qomet

QOMET [7] is short for Quality Observation and Mobility Experiment Tools, which is
a set of tools used for wireless network emulation. It has been developed by researchers
at JAIST since 2006. Our system used the version of QOMET (v2.1), released in June
2013 (Fig. 1).

The emulation mechanism of QOMET consists of two main stages. Firstly, a
scenario description was defined by user to represent the wireless communication
conditions and topology, that are then used to generate the experimental nodes and
computing the network degradation values called deltaQ. Secondly, those degradation
values were applied to the actual traffic by wireconf module (Fig. 2), which is a
wrapper for a link-level emulator called DummyNet [14]. In this case, the degradation
computation step is very simple, but in order to execute the degradation on real-time
traffic of complex topologies was quite a challenge. Our main work focus on creating a
Linux run-time environment for QOMET to be deployed and executed the artificial
wireless network over wired/virtual network, and virtual container is inevitably the
most ideal candidate for creating the QOMET run-time environment.

Fig. 1. QOMET model for the emulation.

Evaluation on UiTiOt Container-Based Emulation Testbed 59



3.2 UiTiOt Testbed

It is important to mention that the underlying infrastructure for the container-based
virtualization is not necessarily the physical machine, a virtual machine can be used to
deploy the container runtime software like LXC, Docker. As shown in Fig. 2, we used
virtual machines to provide an OS-based computing instances for the upper
container-based virtualization. In Fig. 2, a group of virtual machines (VMs) have been
created to deploy a Docker-provided technology called Docker Swarm, which enable
Docker-running VMs to share their computing resource (e.g. CPUs, memory, NIC) to
form a single pool of compute resources that can be interacted transparently from the
user point of view. The most notable feature of this distributed containers model is
overlay networks, which are networks spanning on top of other networks [15]. In other
words, one container from one VM will be able to communication with other con-
tainers from VMs that running Docker Swarm agents, VM0 in this model was dedi-
cated to be a discovery backend service that stores the identities of all VMs in the
Docker swarm setup, this help the VM running Swarm manager discover and check the
availability of Swarm agents it manages. In our model, the overlay networks spanned
on top of lower virtual networks of virtual machines, which otherwise can be physical
networks if we had used physical computers to setup Docker Swarm. In this model,
each experiment node described in QOMET scenario file is substituted by a container.
At first, user had to defined the his experimental scenario in QOMET XML-file, which
was then automatically parsed into Docker-compose YML-file. The file contained
description about number of containers (each represent an experiment node), number of
overlay networks, environment variables inside each container, etc. It important to
mention that QOMET executable binaries (e.g. deltaQ, wireconf, etc.) into the con-
tainer image, which is a versioning image defined which software should be installed

Fig. 2. Architecture of UiTiOt testbed using container-based virtualization.

60 C. Dang-Le-Bao et al.



and run inside the container. In Docker engine, those container image configuration is
defined a single file called Dockerfile. As all relevant file were put into container
including a set of routing software like Quagga [16], OLSRd1. The deltaQ value was
computed on-the-fly in the progress of building the image. At the end of Dockerfile, we
defined an entry point, which points to the application will execute when the container
is created and hence we setup multiple start-up applications at once using a custom
script. Finally, the container image packaged with all necessary files for specific
experiment was distributed across all VMs via a cloud-based container image hosting
Docker Hub2. Finally, the virtual wired-network environment had been established for
emulating environment, the system now creates a number of containers and overlay
networks according to Docker-compose YML-based file. The container distribution
was managed by the Docker Swarm manage and agent to spread the containers across
VMs which currently have available resources. We can also manually define the and
container distribution and container-consumed resources (CPU, memory, etc.) by
specific configuration inside Docker-compose YML-based file3. All relevant logs of the
experiment will be automatically pushed to a pre-defined central file server.

4 Experimental Results

In this section, we evaluated the performance and accuracy of our distributed
container-based testbed through several test-cases. The Docker Swarm setup was
hosted on VMware Fusion hyper-visor running inside a laptop, which is a MacBook
Pro model 2015 equipped with Core i7 (2.2 GHz) and 16 GB of memory. The virtual
machines setup was quite similar to the design, which it has four VM(s): one for
discovery service was assign 1 vCPU/ 1 GB RAM, one as a Swarm manager with 2
vCPU/ 4 GB RAM, two as Swarm agents in which each has 1 vCPU/3 GB RAM.

In our experiment, we deploy 32-node scenario, in which these nodes form a tree
topology network as illustration in Fig. 3. Besides, two routing schemes were used to
enable multi-hop communication among experiment nodes, the first routing mechanism
was RIP which enable by using Quagga routing suite, the second one was Optimized
Link State Routing which implemented by using OLSR daemon (OLSRd). The
communications environment was defined in QOMET test-cases using a list of
parameters shown in the Table 2. a, r, W respectively specify the parameters atten-
uation constant, shadowing parameter, wall attenuation of the log-distance path loss
propagation modeltransmit power specifies the power of the power in dBm. The two
main testing cases were interference and non-interference where pre-defined conditions
shown in Table 2 will artificially affect the link quality between nodes, hence the
wireless network communication will be emulated on top of the wired network by
execution of wireconf module in each node. In the third test-case, the execution of
wireconf module of QOMET was disabled to capture the normal network performance

1 OLSRd: http://www.olsr.org/mediawiki/index.php/Olsr_Daemon
2 Docker Hub: http://hub.docker.com/
3 https://docs.docker.com/compose/compose-file/

Evaluation on UiTiOt Container-Based Emulation Testbed 61

http://www.olsr.org/mediawiki/index.php/Olsr_Daemon
http://hub.docker.com/
https://docs.docker.com/compose/compose-file/


without emulation. The popular network performance measurement tool Iperf [17] was
used to generate network traffic and capture the bandwidth pattern as well as loss-rate.
In detail, the test duration last for 200 s, but the actual duration when iperf client really
communicate with iperf server is approximately 190 s.

We combined 3 mentioned test-cases with two types of routing protocol to create
six different testing cases. Two intended connections were chosen to illustrate the
emulation effects on wired network are: the first connection is from node15 to node31
where the transmission occurred directly between two nodes; and the second con-
nection is from node0 to node31, the multi-hop connection is be the longest branch of
the tree structure. The measured bandwidth of these connections are shown respectively
in following figures Figs. 4 and 5.

In Fig. 4 we continue to discuss the measured bandwidth of a direct connection
from node15 to node31. It is clear from the graph that the figures for 6 cases fluctuated
in a small range during the period except the scenario without interference using OLSR
performed a wide range fluctuation at the beginning of the period, which was till

Fig. 3. Tree topology consist of 32 nodes and multiple subnets

Table 2. QOMET XML-file configuration for two main testing cases

Test-case With interference Without interference

Transmit power 2.5
a 3.2 2.0
r 0
W 0
Noise power −100 0
Standard 802.11a

62 C. Dang-Le-Bao et al.



unexplanable at the moment. The average bandwidth in the experiment without
interference using OLSR was reported to approximately 1015 kbps. Meanwhile, the
figures for the other ones were nearly the same as each other at just under 1050 kbps.

As is shown by the above line chart, the measured bandwidth in both 2 cases which
disabled QOMET was seen to be more stable than the other ones. The figures were
fluctuated in a tenuous range from around 1020 to almost 1080 kbps. Meanwhile, the 2

Fig. 4. Bandwidth measured of connection from node15 to node31

Fig. 5. Bandwidth measured in 6 test-cases from node0 to node31

Evaluation on UiTiOt Container-Based Emulation Testbed 63



test-cases with interference and the one without interference using RIP performed a
fluctuation in the bandwidth of the connection from node 15 to node 31 in a wider
range. They were changed from under 1000 to just above 1110 kbps. In contrast, the
bandwidth in the experiment without interference using OLSR fluctuated in a wide
range at the beginning of the period. The minimum and maximum figures for this
scenario were reported to approximately 130 and over 1300 kbps respectively.

In general, the proportions of packet loss in the experiment with interference were
always at a higher level than the other ones. They were followed by the figures for the
experiment without interference and the one that disabled QOME. In Figs. 6 and 7, the
connection from node 15 to node 31 which was a direct connection, had the lowest
percent of packet loss among 6 connections. The loss-rate for this connection in the
experiment with interference was just under 8%, which was almost 3 times higher than
the figure for the one without interference. Similarly, only approximately 1% packets of
this connection which were unable to reach the destination in the experiment that
disabled QOMET. Regarding the figures for indirect connections which were con-
nections consisting intermediary nodes, the measured loss-rates for the scenario with
interference were at least 18% and up to approximately 24% whereas the corresponding
figures for the one without interference oscillated between 15 and just above 17%. In
the scenario that disabled QOMET, the connections were reported with the lowest
loss-rates among 3 test-cases which were from around 7.5% to 15%. Similar to Figs. 6
and 7 depicts the loss-rates of 3 test-cases but using OLSR instead of RIP. It is clear
from the graph that the experiments using OLSR were reported with a considerably
lower loss-rates than the ones using RIP. In most of connections, the loss-rates among 3
experiments followed a descending order from the experiment with interference then
without interference to the experiment that disabled QOMET. In contrast, a different
order of loss-rates among the 3 test-cases was shown in 2 connections from node 16 to

Fig. 6. Lossrates of test-cases using RIPd (Quagga)

64 C. Dang-Le-Bao et al.



node 26 and from node 15 to node 31. The lowest figure among 3 test-cases was
reported to the experiment with interference at about 0.25% for the connection from
node 15 to node 31 and under 3% for the one between node 16 and node 26. At around
2.3% and exactly 5% packet sloss respectively for these 2 connections, the scenario
without interference was the leader among these 3 test-cases. Meanwhile, the loss-rates
for the experiment that disabled QOMET were shown at 1% for the connection
between node 15 and node 31 and approximately 3.3% for the one from node 16 to
node 26.

5 Conclusion

In a conclusion, we have evaluated the UiTiOt Testbed throughout six test-cases in a
complex tree-based topology. The loss-rate results shown that the system work per-
fectly as our expectation. However, the measured bandwidths showed some abnormal
patterns, in which non-interference case have a wide range of fluctuation than the
interference case, and we have yet addressed any root causes of this problem. We
believe our architecture design have a great potential in large-scale experiment in term
of emulation accuracy, automatic deployment and reasonable cost. Though, there are
still many to work need to be done to improve the testbed: deploying and extending the
underlying infrastructure to more physical or virtual machines to support more ex-
periment nodes, and we also aim to support more latest wireless/IoT routing protocol
like ZigBee, 802.11n, etc., in the near future. Finally, we do hope that this system will
potentially contribute to the development of domestic and international IoTs research
and innovation.

Fig. 7. Lossrates of test-cases using OLSRd

Evaluation on UiTiOt Container-Based Emulation Testbed 65



Acknowledgement. This research is funded and supported by Department of Science &
Technology Ho Chi Minh City, under the contract number: 48/2015/HĐ-SKHCN.

References

1. Gartner.com, 10 November 2015. http://www.gartner.com/newsroom/id/3165317. Accessed
13 April 2017

2. Beuran, R., Nguyen, L.T., Miyachi, T., Nakata, J., Chinen, K., Tan, Y., Shinoda, Y.:
QOMB: a wireless network emulation testbed. In: Global Telecommunications Conference,
GLOBECOM 2009. IEEE (2009)

3. Chuong, D.L.B., Trong, N.L., Le-Trung, Q.: UiTiOt: a container-based network emulation
testbed. In: Proceedings of the 2017 International Conference on Machine Learning and Soft
Computing (2017)

4. Li, H., Zhou, H., Zhang, H., Feng, B.: EmuStack: an openstack-based DTN network
emulation platform. In: 2016 International Conference on Networking and Network
Applications (2016)

5. Miyachi, T., Chinen, K., Shinoda, Y.: StarBED and SpringOS: large-scale general purpose
network testbed and supporting software. In: Proceedings of the 1st International Conference
on Performance Evaluation Methodolgies and Tools (2006)

6. Le-Trung, Q.: Towards an IoT network testbed emulated over OpenStack cloud infrastruc-
ture. In: Recent Advances in Signal Processing, Telecommunications and Computing
(SigTelCom) (2017)

7. Razvan, B., Nakata, J., Okada, T., Tan, Y., Lan Tien, N., Yoichi, S.: A multi-purpose
wireless network emulator: Qomet. In: 22nd International Conference on Advanced
Information Networking and Applications-Workshops, AINAW 2008 (2008)

8. Asaeda, H., Li, R., Choi, N.: Container-based unified testbed for information-centric
networking. IEEE Netw. 28(6), 60–66 (2014)

9. Xavier, M.G., Neves, M.V., Rossi, F.D., Ferreto, T.C., Lange, T., De Rose, C.A.:
Performance evaluation of container-based virtualization for high performance computing
environments (2013)

10. Seo, K.T., Hwang, H.S., Moon, I.-Y., Kwon, O.-Y., Kim, B.-J.: Performance comparison
analysis of linux container and virtual machine for building cloud. Adv. Sci. Technol. Lett.
66, 105–111 (2014)

11. Soltesz, S., Potzl, H., Fiuczynski, M.E., Bavier, A., Peterson, L.: Container-based operating
system virtualization: a scalable, high-performance alternative to hypervisors.
ACM SIGOPS Oper. Syst. Rev. 41(3), 275–287 (2007)

12. Merkel, D.: Docker: lightweight Linux containers for consistent development and
deployment. Linux J. 2014, 2 (2014)

13. Bernstein, D.: Containers and cloud: From LXC to docker to Kubernetes. IEEE Cloud
Comput. 1(3), 81–84 (2014)

14. Rizzo, L.: Dummynet: a simple approach to the evaluation of network protocols.
ACM SIGCOMM Comput. Commun. Rev. 27(1), 31–41 (1997)

15. Chowdhury, N.M.K., Boutaba, R.: A survey of network virtualization. Comput. Netw. 54(5),
862–876 (2010)

16. Jakma, P., Lamparter, D.: Introduction to the quagga routing suite. IEEE Netw. 28(2), 42–48
(2014)

17. Tirumala, A., Qin, F., Dugan, J., Ferguson, J., Gibbs, K.: iPerf - The ultimate speed test tool
for TCP, UDP and SCTP (2005). https://iperf.fr. Accessed 25 Feb 2017

66 C. Dang-Le-Bao et al.

http://www.gartner.com/newsroom/id/3165317
https://iperf.fr

	Evaluation on UiTiOt Container-Based Emulation Testbed
	Abstract
	1 Introduction
	2 Related Work
	3 Architectural Design
	3.1 Qomet
	3.2 UiTiOt Testbed

	4 Experimental Results
	5 Conclusion
	Acknowledgement
	References


