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Abstract. In this paper, we propose an improvement method for image seg-
mentation problem using particle swarm optimization (PSO) with a new
objective function based on kernelization of improved fuzzy entropy clustering
algorithm with spatial local information, called PSO-KFECS. The main objec-
tive of our proposed algorithm is to segment accurately images by utilizing the
state-of-the-art development of PSO in optimization with a novel fitness func-
tion. The proposed PSO-KFECS was evaluated on several benchmark test
images including synthetic images (http://pages.upf.pf/Sebastien.Chabrier/
ressources.php), and simulated brain MRI images from the McConnell Brain
Imaging Center (BrainWeb (http://brainweb.bic.mni.mcgill.ca/brainweb/)).
Experimental results show that our proposed PSO-KFECS algorithm can per-
form better than the competing algorithms.

Keywords: Image segmentation � Particle swarm optimization
Entropy based fuzzy clustering � Fitness function

1 Introduction

Image segmentation is one of the most important and challenging problems in image
analysis. Image segmentation is defined as the partitioning of an image into
non-overlapped consistent regions or objects that satisfy pre-defined conditions. The
level of details depends on the problem being solved or criteria being reached [1].
Image segmentation can be widely applied in many fields, such as medical imaging [2],
data mining [3], pattern recognition [4], computer vision [5], etc. Due to the complexity
of image content and the variety of image sizes, characteristics and other properties,
there is no global solution today able to solve completely the image segmentation
problem. Up to now, various methods for image segmentation have been proposed [6–
9]. They can be divided into four groups: region based image segmentation [10],
clustering based image segmentation [11], thresholding based image segmentation
[12], and edge based image segmentation [13]. In this work, we are focused on the
clustering based approach, using the state-of-the-art particle swarm algorithm equipped
with a novel objective function.

Clustering is considered as the process of dividing data points into homogeneous
classes or clusters, so the samples are similar within each group. Many clustering
methods have been proposed in the literature [14, 15]. Among these clustering
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approaches, fuzzy entropy clustering (FEC) algorithm proposed by Tran and Wagner
[16] and fuzzy C-means (FCM) algorithm proposed by Bezdek et al. [17], which are
based on minimization of an objective function, are widely used in data clustering and
image segmentation for their simplicity and applicability. However, the major draw-
backs of both methods are: (i) they are very sensitive to noise and imaging artifacts,
since no local spatial information in the image is considered; (ii) the results provided
depend not only on the choice of the initial clustering centroids but also on the high
vulnerability of the algorithms to be trapped at the local minima. Many approaches
have been proposed by researchers to overcome these drawbacks.

To overcome the first problem, many enhanced versions have been proposed by
introducing local spatial information to their objective functions. It can be done by
adding penalty terms, modifying elements used weighted concepts, using kernel metric,
or combining with other methods. For instance, Cheng and Zhang [18] have proposed
two algorithms, called KFCM_S1 and KFCM_S2, in which a neighborhood term and
the kernel-induced distance replaced the Euclidean distance have been incorporated
into the objective function. Krinidis and Chatzis [19] proposed a fuzzy local infor-
mation c-means (FLICM) algorithm that added a penalty term using both spatial and
gray-level local information with free of parameter tuning. Verma et al. [20] proposed
an improved fuzzy entropy clustering (IFEC) algorithm. In the IFEC algorithm, the
Euclidean distance is weighted by a new fuzzy factor, which determines both local
gray-level and spatial information.

To address the second problem, many researchers proposed to use metaheuristic
algorithms to perform clustering and image segmentation so as to achieve optimized
performance. For example, Maulik [21], Ouadfel and Batouche [22], Hassanzadeh
et al. [23], Nandy et al. [24], Omran et al. [11] proposed methods based on genetic
algorithm (GA), ant colony optimization (ACO), firefly algorithm (FA), cuckoo search
(CS), and particle swarm optimization (PSO), respectively, for image segmentation
problem. PSO has become one of the most popular metaheuristics and has been used
for clustering problems widely [25] due to simplicity and versatility. Using PSO for
image segmentation problem can be in standalone form [11] or combination with other
methods, such as FCM [26]. However, in PSO-based clustering, to provide good
quality of image clustering, one needs both to tune a range of parameters and to design
of good fitness function. Concerning these problems, Filho et al. [27] proposed a
method that utilized the state-of-the-art PSO algorithm proposed by Zhang et al. [28] to
improve the results of clustering data. Orman et al. [11], Wong et al. [29] proposed new
fitness functions for image segmentation. Experimental results showed that their pro-
posed methods can provide better performance when compared to classical methods.

In this work, we introduce a new method for image segmentation problem. The
method uses low-discrepancy sequence initialized particle swarm optimization with
high-order nonlinear time-varying inertia weight (LHNPSO) algorithm proposed by
Yang et al. [30] with a new fitness function. The reason for choosing LHNPSO lies in
the ability of this variant to outperform the other variants of PSO with two main
advantages, namely, (i) the method can converge faster and give a much more accurate
final solution [31], (ii) it is very easy to be implemented. The new fitness function takes
advantages from kernelized fuzzy clustering approach; in addition, it also takes into
account the spatial local information. Thus, the proposed method may tackle
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simultaneously the two main problems mentioned above. Experiments using synthetic
images, simulated Magnetic Resonance Imaging (MRI) images are reported and the
results are compared with recent fuzzy clustering and PSO-based image clustering
methods.

The rest of the paper is organized as follows. Section 2 presents the related algo-
rithms on which this work is based. Section 3 introduces the proposed method:
LHNPSO algorithm with a new fitness function based on fuzzy entropy clustering for
image clustering. The performance of the proposed method is evaluated and the
comparison with a set of algorithms from the literature is reported in Sect. 4. Finally, in
Sect. 5, we make conclusions.

2 Related Works

The algorithms on which this work is based are described in this section. They are
divided in two groups: fuzzy entropy clustering algorithms and particle swarm
optimization.

2.1 Fuzzy Entropy Clustering

The FEC algorithm proposed by Tran and Wagner [16] is an alternative generalization
of hard c-means (HCM) clustering algorithm, which takes the advantage of fuzzy
entropy. For a set of N data patterns X ¼ fx1; x2; . . .; xNg; the algorithm allows
partitioning the data space, by minimizing an objective function JFEC with respect to
the membership matrix U = {uij} and the set C of cluster prototypes C = {ci}:

JFEC C;X;Uð Þ ¼
XC
i¼1

XN
j¼1

uijd
2 xj; ci
� �þ n

XC
i¼1

XN
j¼1

uij log uij ð1Þ

Subject to:

0� uij � 1 i ¼ 1; . . .;C j ¼ 1; . . .;NPC
i¼1

uij ¼ 1 8j 0\
PN
j¼1

uij\N 8i ð2Þ

Where xj, a data pattern, is jth pixel in the image, which can be intensity value or
gray value; d2(xj, ci) is the Euclidean distance between the pixel xj and centroid ci; and
n is the degree of fuzzy entropy.

The FEC objective function, JFEC, can be minimized by iteratively using the fol-
lowing update equations:

uij ¼
XC
r¼1

exp d2 xj; ci
� �� d2 xj; cr

� �� �� �1=n( )�1

ð3Þ
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ci ¼

PN
j¼1

uij � xj
PN
j¼1

uij

ð4Þ

The FEC algorithm can uniformly be summarized in the following steps:

After FEC clustering, each pixel will be associated with a membership value for
each cluster. To get the image segmentation, the simplest way is assigning pixels to the
clusters with the maximum membership values.

From Eq. (1), it is clear that the objective function of FEC does not take into
account any local spatial information. Also, the metric is the Euclidean distance, d2(xj,
ci), which measures the similarity between the pixel intensity and the cluster centroids.
This metric assumes that each feature of data points is equally important and inde-
pendent from others. This assumption may not be always satisfied in real applications
[26]. We make the necessary corrections to this problem as explained in Sect. 2.2.

2.2 Kernelized Fuzzy Entropy Clustering with Spatial Information

2.2.1 Kernel Representation
Recently, ‘kernel method’ was proposed and was proved successful for various
applications, such as in pattern recognition and function approximation. The idea of the
method of kernel functions (called kernel trick) uses a ‘nonlinear’ transformation
U : Xp ! H, where Xp is input data space with low dimension and H is a high
dimensional feature space. The structure of input data points may be inadequate for the
analysis in the original space, but they are capable of analysis in space H [32]. In H, the

Euclidean distance xj� ci
�� ���� ��2 is substituted by U xj

� ��U cið Þ�� ���� ��2, which is defined by
using kernel function K as

U xj
� �� U cið Þ�� �� ¼ K xj; xj

� �þK ci; cið Þ � 2K xj; ci
� � ð5Þ

Where K(xj, ci) is a kernel function, which calculates the inner product. In this
paper, Gaussian kernel is adopted as

K xj; ci
� � ¼ U xj

� �
;U cið Þ� 	 ¼ exp � xj � ci

�� ��2=r2
 �
ð6Þ
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It is clear that the parameter r of Gaussian kernel can greatly affect the result of
kernel methods. For instance, when r tends to zero, K(xj, ci) turns into an impulse
function with the value of 1 only at xj = ci and 0 elsewhere. In this case, any two points
in the feature space have a common value close to 1, in other words, it will be very hard
to cluster. On the other hand, when r towards to infinity, any two points in the feature
space toward to zero, which makes them difficult to separate. In this work, the esti-
mation of r2 is based on Yang’s work [33]. It is defined as:

r2 ¼ k
XN
j¼1

xj � �x
�� ��2=N; �x ¼ XN

j¼1

xj ð7Þ

k is a constant defined by experiments.

2.2.2 Kernel Fuzzy Entropy Clustering with Spatial Information
Algorithm
In this section, a new objective function based on fuzzy entropy clustering algorithm
and kernel method is proposed. The objective function is given as follows:

JKFEC S C;U;Xð Þ ¼
XC
i¼1

XN
j¼1

uij 1� K xj; ci
� �� �þ n

XC
i¼1

XN
j¼1

uij log uij

þ g
XC
i¼1

XN
j¼1

uij 1� K xj
�
; ci

� �� � ð8Þ

Where the constraints in Eq. (2) must be satisfied. The third term is the spatial
constraint term, in which the parameter η controls the penalty effect of the spatial
constraint. The median of the neighbors within a window around the pixel xj is used to
represent xj.

By using the Lagrange multiplier method, the necessary conditions for the mini-
mization of the objective function in Eq. (8), with the constraints in Eq. (2), can be
found. Specifically, taking the first derivatives of JKFEC_S with respect to uij and ci, and
zeroing them, respectively, two necessary but not sufficient conditions for JKFEC_S to be
at its local optimal solution will be obtained as follows:

u�1
ij ¼

XC
r¼1

exp n�1 � 1� K xj; ci
� �� �þ g � 1� K xj

�
; ci

� �� �� �� �
exp n�1 � 1� K xj; cr

� �� �þ g � 1� K xj
�
; cr

� �� �� �� � ð9Þ

ci ¼

PN
j¼1

uij � K xj; ci
� � � xj þ g � K xj

�
; ci

� � � xj�� �
PN
j¼1

uij � K xj; ci
� �þ g � K xj

�
; ci

� �� � ð10Þ

The proposed kernelized fuzzy entropy clustering with spatial local information
(KFEC_S) is described in Algorithm 2.
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As stated above, the Eqs. (9) and (10) are only necessary conditions for minimizing
the objective function JKFEC_S; as a result, obtained clustering solutions may be local
optima. This is also the drawback of fuzzy clustering and its variants when solving
image segmentation problem. To overcome this drawback, we use a metaheuristic
optimization-based approach, as explained in the Sect. 2.3.

2.3 Particle Swarm Optimization

PSO is a population based stochastic optimization technique and is regarded as global
search strategy, which was originally introduced by Kennedy and Eberhart [34]. In PSO,
each individual of the population called a particle represents a potential solution to the
optimization problem; and the population of individuals (P) or swarm is evolved through
successive iterations. The quality of a candidate solution is evaluated by the fitness value,
associated to each particle. Each particle, denoted i, has a position vector (Xi = {xir}), a
velocity vector (Vi = {vir}), its own best position (Pbest) found so far, and interacts with
neighboring particles through the best position (Gbest) discovered in the neighborhood so
far. At each iteration k, each particle is moved according to Eq. 11 [35]:

Vi kþ 1ð Þ ¼ wVi kð Þþ c1r1 Pbest kð Þ � Xi kð Þð Þþ c2r2 Gbest kð Þ � Xi kð Þð Þ ð11Þ

Xi kþ 1ð Þ ¼ Xi kð ÞþVi kþ 1ð Þ ð12Þ

Where, c1 and c2 are acceleration coefficients that scale the influence of the ‘cog-
nitive’ and ‘social’ components; r1 and r2 are two random values, uniformly distributed
in [0, 1]; w is inertia weight. The higher the w is, the higher the ability of searching in
the global solution space is, and the smaller w is, the higher the ability of searching for
the local solutions.

There are two basic criteria for assessing the performance of PSO algorithm,
namely, convergence speed and ability to find global optima. To achieve these goals,
the balance between global exploration and local exploitation is crucial. From Eqs. (11)
and (12), it is clear that the performance is not only dependent on the controlling
parameters (w, c1, c2), but also dependent on the size and the structure of neighbor-
hood. In this work, initializing the population and tuning parameters (w, c1, c2) are
adopted from Yang et al. [30], who designed LHNPSO algorithm. In LHNPSO, the

364 T. X. Pham et al.



initial population of particles is generated by using the Halton sequence to cover the
search space efficiently, (c1, c2) are set to constants, equal to 2, and inertia weight is
updated as follows:

w kþ 1ð Þ ¼ wmax � wmax � wminð Þ k
kmax

� 1=p2

ð13Þ

Where (wmin, wmax) is the range of inertia weight, with wmin = 0.4 and wmax = 0.9,
k and kmax are the iteration number starting from iteration one and the maximum
number of allowable iterations, respectively. This law of variation of w increases the
exploration of the search space in the first iterations of the algorithm, and the
exploitation of the best solutions found so far towards the end of the algorithm. This
constitutes a very good balance between the phases of exploration of the search space
and the phases of exploitation of the solutions.

The procedures of LHNPSO algorithm can be summarized as:

The performance of LHNPSO is only tested with the unconstrained optimization
problems. For more complex problems, the need of further development is still
required.

3 The Proposed Algorithm, Kernelized Fuzzy Entropy
Clustering with Spatial Information Using LHNPSO

As discussed in Sect. 2, the kernelized fuzzy entropy clustering with spatial informa-
tion model is a complex nonlinear model. The KFEC_S algorithm can be trapped into
local minima because local search method (gradient method) is used to solve the
model. By contrast, the algorithm has the advantage of converging quickly. On the
other hand, LHNPSO is a global optimization method, which can provide global
optimum solution, but with a relatively longer convergence time. So, we use LHNPSO
with minor improvements to optimize KFEC_S, trying to get the global optimum
solution by escaping the trap of local optimums, and we use at the same time KFEC_S
to guide the LHNPSO research process in order to converge more quickly and antic-
ipate more accurate solution. Thus, a new image clustering algorithm based on
KFEC_S and LHNPSO, named PSO-KFECS, is proposed. The details of this algorithm
are given in the next section.
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3.1 Particle Representations

When LHNPSO is applied to optimize the kernelized fuzzy entropy clustering with
spatial information objective function JKFEC_S, cluster prototypes C = {ci}C are chosen
to be optimization variables and encoded as positions of particles. For P particles or
solutions, there are in total C * P optimization variables needing to be encoded. The
position of ith particle can be described as: Xi ¼ xi1; xi2; . . .; xiC½ �. Here, xij represents
the jth cluster centroid among C centroids of the ith solution. In this way, cluster
centroids are encoded in position vector Xi and C can be obtained by decoding Xi.

3.2 Fitness Function

After decoding Xi to get cluster centroids C and calculating fuzzy partition matrix
U according to Eq. (9), the value of the fitness function can be calculated by evaluating
JKFEC_S according to Eq. (8).

fi ¼ JKFEC S ð14Þ

Minimization of fi is the same as minimization of the objective function JKFEC_S,
which leads to the optimal partitioning of the image.

3.3 The Proposed Algorithm

The proposed algorithm, PSO-KFECS, takes both advantage of the excellent feature of
LHNPSO, in the aspect of optimizing the objective function of kernelized fuzzy
entropy clustering with spatial information and the kernel, and the KFEC_S gradient
method, in aspect of speeding up convergence.

To make sure that all particles are moving within the search space and avoiding
divergent behavior, the position and the velocity are limited as follows:

vij kþ 1ð Þ ¼
randðÞ � vmax if vij kþ 1ð Þ[ vmax

�randðÞ � vmax if vij kþ 1ð Þ\� vmax

vij kþ 1ð Þ otherwise

8<
: ð15Þ

xij kþ 1ð Þ ¼ randðÞ � 12 � xmax � xminð Þ if x\xmin or x[ xmax

xij kþ 1ð Þ otherwise

�
ð16Þ

Where vmax is the largest allowable step size in any dimension; and, [xmin, xmax] are
the bounds of the search space in each dimension. In image clustering, commonly, vmax
is set to 5 and [xmin, xmax] are the minimum and maximum of the feature (intensity or
gray value) of the image.

Putting all discussions above together, the PSO-KFECS algorithm is shown as
follows:
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In this work, the number of non-significant improvements of the fitness function
and the maximum number of iterations are used as the stopping criteria of the algo-

rithm. Thus, if the condition f ðkþ 1Þ
i � f ðkÞi

��� ������ ���\e is completed kstop times or the con-

dition k > kmax is reached, the algorithm is immediately stopped.

4 Experimental Results

This section presents the results of the experimental evaluation of our algorithm. With
this aim in view, our algorithm is compared with those from five well-known image
clustering algorithms in the literature: FEC [16], KFCM_S2 [18], FLICM [19],
PSO-based image clustering algorithms proposed by Orman et al. [11] (PSO_V1) and
Wong et al. [29] (PSO_V2). Two image datasets: synthetic images [36], simulated MRI
brain images from BrainWeb [37], with different numbers of cluster centroids and
levels of corrupting noises, are used to evaluate the performance of the proposed
algorithm. All the algorithms are implemented in MATLAB 2014b and executed with a
computer with Intel Core i3 1.5 GHz CPU, 4G RAM under Microsoft Windows 7. The
values of the parameters of our method are based on conclusions in the relative liter-
ature and try-and-error technique. Parameter settings are given in Table 1.

4.1 Quantitative Evaluation

In order to compare the results of different segmentation methods, supervised evalu-
ation methods are used. In supervised evaluation methods, we use Jaccard index [38]
and Hausdorff distance [39], because current research [40] reports that they are suitable
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metrics for the evaluation when there exists outliers with or without small segments,
complex boundaries, low densities in the image.

4.1.1 Jaccard Index
This index is an overlap index, which directly compares the segmented image (Is) and
the ground truth image (It) by measuring similarity between them. The higher value
indicates the better result. Jaccard index is defined as the intersection between seg-
mentations divided by the size of their union, that is

JAC Is; Itð Þ ¼ TP
TPþFPþFN

ð17Þ

Where TP, FP, FN are basic cardinalities of the confusion matrix, namely, the true
positives, the false positives, and the false negatives, respectively.

4.1.2 Hausdorff Distance
This is a spatial distance based metric, which measures the dissimilarity between the
segmented image and the ground truth image. The lower value indicates the better
result. It is defined as follows:

HD Is; Itð Þ ¼ max h Is; Itð Þ; h It; Isð Þð Þ ð18Þ

Where h(Is, It) is called the directed Hausdorff distance and given by:

h Is; Itð Þ ¼ max
ps2Is

min
pt2It

ps � ptk k ð19Þ

Where ps � ptk k is the Euclidean distance between the gray values of pixel ps in the
segmented image and pixel pt in the ground truth image.

4.2 Experiments on Synthetic Images

To compare the sensitivity of the algorithms to noise, we apply them to 256 � 256
synthetic images [36], which have 4 or 5 regions and corrupted with salt and pepper or

Table 1. Setting of specific parameters in PSO-KFECS

Parameters Values

Population size 40
c1 = c2 2.0
Degree of fuzzy entropy, n 20
The spatial constraint parameter, η 2.6
The controlling Gaussian kernel parameter, k 1/p
The number of non-significant improvement, kstop 10
The terminate criterion parameter, e 0.00001
Maximum number od iterations, kmax 100
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Gaussian noises with different levels. For the salt and pepper noise, the variance of the
noise varies from 0.04 to 0.1 with a step of 0.02; for Gaussian noise, the noise
variances are in range of [0.004, 0.01] with steps of 0.002.

Figure 1 describes an example of the segmentation results of a synthetic image,
including 5 regions corresponding to gray values taken as 1, 61, 121, 181, and 241,
corrupted with 0.1 variance of salt and pepper and 0.01 Gaussian noise. From Fig. 1,
one can see, visually, that even though the six competitive methods give a coherent
segmentation result, the proposed method produces better results than the others.

Fig. 1. Segmentation results on synthetic image corrupted by salt and pepper noise (0.1) and
Gaussian noise (0.01): (a) original image; (b) salt and pepper noise image; (c) Gaussian noise
image; (d, e) FEC results; (f, g) KFCM_S2 results; (h, i) FLICM results; (j, k) PSO_V1 results; (l,
m) PSO_V2 results; (n, o) PSO-KFECS results.
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Table 2 provides the numerical scores (Eqs. 17 and 18) of the six competitive
methods, they are the average of 10 successful program runs. The table shows clearly
that the proposed PSO-KFECS algorithm provides superior results. Indeed, the contours
of the original images are better reconstructed and the regions are more homogeneous.

4.3 Experiments on Simulated MRI Images

BrainWeb provides a simulated brain database (SBD) that contains a set of realistic MRI
data volumes. We have applied the proposed PSO-KFECS and 5 other algorithms on
normal brain images, which have characteristics of Mobility T1, slice thickness 1 mm,
with different levels of noise (0%, 1%, 3%, 5%, 7%, 9%), and different levels of non-
uniformity (0%, 20%, 40%). These images were segmented with 4 cluster centroids:
background, cerebral spinal fluid (CSF), gray matter (GM), and white matter (WM).

Table 2. Segmentation evaluation scores of different methods

Noise type Metrics FEC KFCM_S2 FLICM PSO_V1 PSO_V2 PSO KFECS

Salt and pepper JAC 0.7318 0.9931 0.7309 0.7325 0.7300 0.9954
(0.1) HD 4187 3462 4324 4263 4187 1660
Gaussian JAC 0.5105 0.9746 0.6429 0.4765 0.5150 0.9912
(0.01) HD 4296 3698 4223 4183 4200 2980

Fig. 2. Original and segmented images by different algorithms: (a) original T1-weighted axial
image with 7% noise and 20% intensity of non-uniformity; (b) original image after skull
stripping; (c) the ground truth images; (d) FEC results; (e) KFCM_S2 results; (f) FLICM results;
(g) PSO_V1 results; (h) PSO_V2 results; (i) PSO-KFECS results.
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Figure 2 shows an example of segmentation of simulated brain image with 7% of
noise and 20% intensity of non-uniformity. Visually, the comparison of the perfor-
mance of the same six competitive algorithms is a little bit vague. The quantitative
performance evaluation is given in Table 3. In this table, it can be seen that the scores
of the proposed algorithm that PSO-KFECS outperforms all competing, only FLICM
reveals better for GM with Jaccard index.

5 Conclusion

In this paper, an improved particle swarm optimization with a new fitness function - the
kernelized fuzzy entropy clustering with spatial information, for image segmentation -
is proposed. Two drawbacks of fuzzy clustering algorithms, which are the trapping of
the solution into local minima and the sensitivity to noise and imaging artifacts, have
been partially overcome. The experimental results show that our method is more
effective in comparison with five competitive methods of the literature. However, there
is still much work for us to go further. Specifically, the determination of the parameters:
n (degree of fuzzy entropy) and η (controlling parameter of the spatial information) is
an open question. In addition, only one criterion (JKFECS) is used to guide the search
process of the solution, this may lead to the situation that the solution is a global
optimum of the criterion, but it may not be the optimum of the segmentation problem.
In addition to the mentioned improvements, we also intend to accelerate the conver-
gence times of our algorithm, by implementing it on multicore computer architecture in
order to parallelize the data processing. Indeed, although they are more precise,
metaheuristics based algorithms have the drawback of providing more convergence
times because they cover more widely the solution search space. Moreover, we plan to
apply a multi-objective optimization approach, in order to take benefits of other criteria.
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