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Abstract. In this paper, we propose a new resampling method of particle filter
(PF) to monitor target position. The target location is to improve enhancing the
effect of the received signal strength (RSS) variations. The key issue of our
technique is to determine a new resampling parameter that finding the optimal
bound error and lower bound variance values for Kullback-Leibler distance
(KLD)-resampling adjusted variance and gradient data based on PF to amelio-
rate the effect of the RSS variations by generating a sample set near the
high-likelihood region. To find these values, these optimal algorithms are pro-
posed based on the maximum mean number of particles used of our proposal
and other KLD-resampling methods. Our experiments show that the new
technique does not only enhance the estimation accuracy but also improves the
efficient number of particles compared to the traditional methods.
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1 Introduction

The core challenge in wireless sensor network (WSN) is the estimation of target
location in space, for instance, moving velocity of client and other physical parameter
in [1]. These parameters of target tracking are estimated by many different techniques.
The recent technique is a recursive Bayesian filter that uses a set of particles with
assigned primary weights serves as the basic idea of a particle filter (PF) in [2]. A set of
weighted particles is theoretically qualified to represent any filtering distribution.
Therefore, each particle conforms to the dynamic model and explains the observations,
and then using this assessment to update set online for evaluating filter. As a result,
Bayesian posterior estimate is formed.
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Over the past decade, most research in WSN has emphasized the use of PFs in [3–5]
for solving many problems. Almost all of them are based on three operations. The first
operation, called particle propagation, is to update the state of particles via the state
transition process. The second one, namely weight computation, is the process that
updates the weight of particles. The last one, called resampling, is to sample a new set of
particles from the original particle population for better particle representation of the
filtering distribution. Thanks the parallel processing to reduce the complexity of the
former two processes and easily implement if parallel hardware is available. While the
resampling step is a critical procedure for PF to avoid a degenerate set of particles
(sample impoverishment) leading to the estimation inaccuracy. There are many methods
are introduced such as initially employed to combat degeneracy in [6], generally
replicating high-weighted particles to replace low-weighted particles in [4] for reducing
the probability that the filter loses tracking.

A recent year, a number of authors have considered the effects of choosing metric
and weight functional approach on PFs in [3, 8, 10]. The first approach, the PF based
on Kullback-Leibler Distance (KLD)-sampling, determines the minimum number of
particles needed to maintain the approximation quality in the sampling process.
Meanwhile, adjusting standard deviation and then using gradient data for
KLD-sampling in [10] is proposed to further improve the operation time and sample set
size for target tracking thanks to the given upper bound error with fixed probability. In
the KLD-sampling, the predictive belief state is used as the estimate of the underlying
posterior in [8]. In contrast to KLD-sampling algorithms, KLD-resampling algorithms
in [3] also determines the number of particles to resample so that the KLD between the
distribution of particles before resampling and after resampling does not exceed a pre-
specified error bound.

Our recent work in [9, 14] introduced an enhanced PF based on the finding lower
bound variance for KLD-resampling adjusted variance and gradient data algorithm to
improve the estimation error of target for WSN because of the variation of RSS
measurement value is the diminished. Meanwhile, our research in [12, 15] also
introduced another enhanced PF based on the finding upper bound error for
KLD-resampling to further improve the estimation error of target for WSN in [12],
especial in [15] show the enhancing estimation error in various power levels in
localization and ubiquitous monitoring of patients system in [11].

In this paper, we more extend and apply the finding bound error algorithm for our
method in [9, 14]. Our technique is to propose the finding bound error method in [12, 15],
called adjusted bound error, and the finding lower bound variance algorithm in [9, 14],
called adjusted lower bound variance, to further reduce the estimation error of target and
maintain the proper KLD-resampling in [7]. By combining the adjusted bound error in
[12, 15] and adjusted lower bound variance in [9, 14] for KLD-resampling adjusted
variance and gradient data, our experiments show that the new technique not only
enhances the estimation accuracy but also improves the efficient number of particles used
when compared traditional methods for WSN based on RSS measurement.

The paper is organized as follows. Introduction to system is given in Sect. 2. All
related schemes, namely, SIR, KLD-resampling, KLD-resampling adjusted variance
and gradient data are presented in Sect. 3. Our proposal is introduced in Sect. 4.
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All experimental results based on MATLAB for tracking are shown in Sect. 5.
Finally, we conclude the paper in Sect. 6.

2 System Model

We consider the robot carrying the sensor node (e.g. mobile node) and the node at
some position as static node or node. We assume that the mobile robot moves along the
determined path and a velocity in the long and thin region. The mobile robot can send
the data to anchors, and then it can receive the data from the anchors. Its position can be
computed by PF algorithm. We also assume all sensor nodes that have own equal
physical parameters; the movement velocity of mobile node remains the same at time;
the random velocity follows normal uniform distribution and the anchors are deployed
at a determined pattern and the position can not be changed. This system model is
divided into three parts, including mobility, RSS statistical and system state models.

2.1 Mobility Model

When the robot moves along the direction at the constant value, the time is divided into
equal time segment. The velocity of the robot has some random noise which conforms
to normal distribution (l = 0, r = 1). So the random velocity and the determined
velocity can be expressed as Fig. 1. Let us denote v″ (the solid line) to be the deter-
mined velocity and v′ (the dot dash line) to be the random velocity. Then, the dash line
is the last velocity of the robot. The random velocity v′ is a random variable which
conforms to normal distribution.

2.2 RSS Statistical Model

The RSS statistical model indicates the relation between the RSS and distance between
nodes. The common mathematical model of WSN can be expressed as follows

PðdÞ ¼ Pðd0Þ � 10n log
d
d0

� �
þ vr; ð1Þ

where P(d) is the RSS at position d between transmitter and receiver, P(d0) is the RSS
at reference position (typically d0 = 1 m); n is the path loss parameter related to the
specific application environment; and vr is a Gauss stochastic variable.

Fig. 1. Vector decomposition of determined and random velocity [16]
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2.3 System State Model

The system state model for the mobile wireless sensor in [13, 16] is defined as follows

xk ¼ xk�1 þVkDt + wk; ð2Þ

zk ¼ Pref þKlogðxkÞþRvk; ð3Þ

where xk is the position of a mobile node from the anchor, Dt is the time segment, zk is
the RSS measurement; Vk is the current velocity which consists of determined velocity
and random velocity in (1); the wk and vk denote the system state noise and mea-
surement noises which obey Gauss distributions whose mean are 0 and variances are Q
and R, respectively; Pref is reference value of RSS, and K is the factor in path loss.

To evaluate the required number of particles, the system state model in (2) and in
(3) can be rewriten as follows

xk ¼
1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

2
664

3
775ðxk�1 þVkDt) +

0:5 0
1 0
0 0:5
0 1

2
664

3
775Q w1;k

w2;k

� �
: ð4Þ

zk ¼ Pref þKlog arctanðx1;k; x3;kÞ
� �þRvk: ð5Þ

3 Particle Filters

In this section, we review all related PFs based on SIR algorithm in [5],
KLD-resampling algorithm in [7], and KLD-resampling adjusted variance and gradient
data algorithm in [9].

3.1 SIR PF

The concept of the SIR PF introduced in [5] is the simplest of all PFs for tracking
which known as the bootstrap filter, condensation algorithm, interacting particle
approximations and survival of the fittest. The core problem represents the required
posterior density function by a set of random samples (particles) with associated
weights, and computes the estimates by these samples and weights. When the number
of samples increases very large, the Monte Carlo characterization becomes an equiv-
alent representation of the posterior probability function.

The so-called sequential important sampling (SIS) algorithm for the PF in [5] which
includes a resampling step at each instant, as described in detail in references. The SIS
algorithm serves as an important density (or a proposed density to represent another
one that cannot be exactly computed), that is, the sought posterior density in the present
case. Then, samples are drawn from the important density instead of the actual density.
A common problem with the SIS PF is the degeneracy phenomenon, where after a few
states all but one particle will have negligible weight in [4]. This degeneracy implies
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that a large computational effort is devoted to updating particles whose contribution to
the approximation of the posterior density function is almost zero. By increasing the
number of particles (or more efficiently by approximately selecting the important
density), this problem can be overcome. In addition, the use of resampling technique in
[5] is recommended to avoid the degeneracy phenomenon (Table 1).

3.2 KLD-resampling

In the sampling process, as these individuals in the population are sorted by non-
domination, the use of fast KLD-sampling technique in [8], called an adaptive PF at
each iteration of the PF, determine the number of samples such that, with probability
1 − d, the error between the true posterior and the sample-based approximation is less
than e. KLD is used to show how to determine the number of samples so that the
distance between the sample-based maximum likelihood estimate and the true posterior
does not exceed a pre-specified threshold.

The KLD between the proposal (q) and (p) distributions can be defined in discrete
form as follows

dKLðp qk Þ,
X
x

p(x)log
p(x)
q(x)

� �

¼
X
x

W(x)q(x)logW(x);
ð6Þ

with W(x) = p(x) / q(x). The required number Nr of samples can be determined as
follows

Table 1. SIR PF
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Nr ¼ 1
2e

v2k�1;1�d; ð7Þ

where k is the number of bins with support, the quantizes of Chi-square distribution can
be computed as follows

P v2k�1 � v2k�1;1�d

� 	
¼ 1� d: ð8Þ

Based on Wilson-Hilferty transformation to compute the approximation of v2k�1;1�d

in (7) can be expressed as follows

Nr ¼ k� 1
2e

1� 2
9ðk� 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

9ðk� 1Þ z1�d

s !3

; ð9Þ

where z1−d is the upper quartile of the standard normal distribution.
According to the number of particles needed in (9), an upper bound e plays

important role in statistical bounds of the approximation quality of samples that are
actually drawn from the proposal rather than the true posterior distributions. To avoid
the mismatch between the true and the proposal distributions, the result in (9) can be
applied in the resampling process to determine the total number of particles to
resample. The authors in [7] proposed the method which divides the particles of the
posterior distribution into bins and count the number k of bins which at least one
particle is resampled to determine the total number of particles to resample as follows

Nr;re ¼ min Nmax; ceilðNrÞð Þ; ð10Þ

where Nr is defined in (9).

4 Proposal Techniques

In this section, we propose the adjusted resampling algorithm, including the finding
bound error and lower bound variance values, for KLD-resampling adjusted variance
and gradient data can be presented in Table 3.

4.1 KLD-resampling with Adjusted Resampling Parameter

With successful KLD-resampling via the help of adjusted variance and gradient data
[14, 17] is to enhance the operation time and Root Mean Square Error (RMSE) criteria.
This thanks to adjusting the variance size by increasing variance inversely proportional
to the likelihood and creating new samples near the true distribution or the high
likelihood region. By the similarity to this method, our propose is to incorporate the
KLD-resampling with adjusted variance and gradient data as the following.

First, the adjusted variance can be computed by using the relationship between the
maximum number of samples and the number of required samples as follows
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rad ¼ rld þ e
Nr;re

Nmax
; ð11Þ

where rad and rlb are the adjusted and lower bound variances, respectively; Next, the
new samples should be drawn as follows

xiþNr;re

k ¼ xik þ rad � randn; if(9i) @pðhðxÞÞ@x

���
x¼xik

[ 0

xik � rad � randn; otherwise

8<
: ; ð12Þ

where @p hðxÞð Þ
@x

���
x¼xik

¼ @
@x

1
r
ffiffiffiffi
2p

p exp � zk�hðxÞð Þ2
2r2

n oh i���
x¼xik

is the variance of a Gaussian

probability distribution function.

Final, the new samples xiþNr;re

k in (12) is used to update the weight. This leads to
generate new samples with high likelihood region. As a result, operation time reduces
and the accurate of tracking objects is high due to small sample set size. To sum up, our
algorithm can be shown in Table 2.

Table 2. Pseudo-code of proposal
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4.2 Resampling Parameter Bound Error (Proposal)

The key issue of KLD-resampling with adjusted variance and gradient data is to
determine the bound error in (7) and the lower bound variance in (11) to evaluate the
number of particles used-based resampling process. Our works provided the finding
lower bound variance algorithm with fixed bound error (0.65) in [9] through the
available value in [7]. Meanwhile, our current works in [12] also provided the bound
error algorithm for KLD-resampling adjusted variance and gradient data, we extend
and apply this algorithm to determine the bound error for KLD-resampling with
adjusted variance and gradient data in [9] as shown in Table 3.

Table 3. Finding the bound error
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Let us denote ei the bound error of ith, RMSEPro
ei

which is the RMSE value of
proposal at ei; RMSEKLD�adj and RMSESIR are respectively the RMSE values of
KLD-resampling adjusted variance and gradient data (fixed bound error 0.65) in [9]
and SIR in [5]. Let us denote DRMSESIR

Pro and DRMSEKLD�adj
Pro are the gap of RMSE

values between SIR in [5] and proposal; between KLD-resampling adjusted variance
and gradient data in [9] and proposal, respectively.

Let us define NKLD�adj
r;re and Nr;re

� �Pro
ei�

as the mean numbers of particles used of

KLD-resampling with adjusted variance and gradient data (fixed bound error) [9] and
proposal, respectively; and ei� (line 14) is the sets of the bound error that fulfills the
condition of Remark 1 (line 13).

Remark 1: if DRMSESIR
Pro and DRMSEKLD�adj

Pro are greater than zero (line 13), then a
bound error value eopt (line 19) exits to maximize the function DN.

5 Simulation Results

We conduct a series of simulations to determine the bound error in (9) based on
Table 3. Next, the performance of RMSE, mean number of particles used, and the
comparison of the number of particles used between our proposal and for
KLD-resampling adjusted variance and gradient data in [9] are considered.

5.1 Finding Resampling Parameter Bound Error

Setting up the range of bound error value is [0.8, 0.95] with De = 0.05 as shown in
Table 4 to satisfy the RMSE criteria between SIR, KLD-resampling adjusted variance
and gradient data (fixed bound error e = 0.65) in [9], and our algorithm under the same
conditions. The parameters of system are assumed and simulated as follows [9] d =
0.01; bin size as the smaller of the standard deviations of the dynamic and the mea-
surement (R = Q = 0.5), N = 300, Nmax = N; Vmax = 5; Vmin = 1; Vinit = 5; Pref =
−23; K = −45; and length time is 40 for sample size variation in 20 trials with various
bound error values e from 0.8 to 0.95 in Table 4. Based on Remark 1, the value eopt =
0.95 is the optimal bound error because the function DN is to maximize at value 9.7
(the italic row, Table 4). Thus, we set up this value for our proposed method in the next
section, and simulations are conducted to compare the RMSE criterion and the number
of particles used for all approaches as shown in Figs. 2 and 3, respectively.

Table 4. Mean RMSE vs. Mean Number of particles used

e rlb
(Algorithm
6 in [9])

Mean RMSE DNKLD�adj
Pro DRMSESIR

Pro DRMSEKLD�adj
Pro

SIR KLD-
resampling
[7]

KLD-resampling
adjusted bound
error [12]

KLD-resampling
adjusted variance
and gradient data
[9]

Proposal

0.8 0.8 0.0530 0.0812 0.0287 0.0607 0.0181 8.7 0.0349 0.0426

0.85 1.05 0.0992 0.0906 0.0413 0.0638 0.0207 9.2 0.0785 0.0431

0.9 1.4 0.1226 0.0986 0.0651 0.0918 0.0705 9.4 0.0521 0.0213

0.95 1.3 0.0267 0.0245 0.0194 0.0191 0.0109 9.7 0.0158 0.0082
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5.2 Performance for SIR, KLD-resampling, Proposal

Figure 2 shows the comparison of RMSE for SIR in [5], KLD-resampling (e = 0.65) in
[7], KLD-resampling adjusted variance and gradient data in [9] (rlb = 1.3, fixed bound
error e = 0.65), KLD-resampling adjusted bound error (e = 0.95) in [12] and our
proposal with length time 40, sample size in 20 trials. Clearly, the RMSE value of our
proposal is lower than that of the others. For example, from 8 to 36 s, the gap between
the proposed approach and KLD-resampling adjusted variance and gradient data in [9]

Fig. 2. RMSE of system for all approaches

Fig. 3. Mean number of particles used for sample size variation in 20 trials

Table 5. Bound error and lower bound variance values vs. various Q

Nmax (e based on Table 3; rlb based on Algorithm 6 in [9])
R = 0.5, Q = 0.1 R = 0.5, Q = 0.3 R = 0.5, Q = 0.7

100 (0.95; 0.3) (0.95; 0.15) (0.95; 0.05)
400 (0.95; 0.5) (0.95; 0.8) (0.95; 1.2)
800 (0.95; 1.4) (0.95; 0.2) (0.85; 0.3)
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regularly increases from about 0.05 to around 0.62, respectively, due to the adjusted
lower variance algorithm (see Algorithm 6 in [9]). Furthermore, our method also
improves the accuracy of target when compared KLD-resampling adjusted bound error.

The comparison of the mean number of particles used of KLD-resampling,
KLD-resampling-based adjusted variance and gradient data in [9], KLD-resampling
adjusted bound error in [12], and our proposal is shown in Fig. 3. It verifies that the
curves of mean number of particles used with adjusted bound error are lower than that
of without adjusted bound error. For instance, the curves of these methods maintain
from 7 to 40 s. Otherwise, the number of particles used for our method is around 19
and sharply decreases after the next seconds it reaches about 4 particles used. Finally,
our method slightly improves the number of particles used when compared
KLD-resampling adjusted bound error in [12].

Similar to Sect. 5.1, the bound error and lower bound variance values can be found
in Table 5 in case of changing various Q (0.1; 0.3; 0.7) and different number of
samples. The gap of mean number particles used for KLD-resampling adjusted vari-
ance between with and without adjusted bound error under various Q can be evaluated
and shown in Fig. 4. When increasing the number samples from 100 to 800, the mean
number of particles used of our method is less than that of KLD-resampling adjusted
variance and gradient data about 9 particles with different Q.

6 Conclusion

This paper, we propose a new resampling parameter for KLD-resampling adjusted
variance and gradient data based on PF to estimate the location of target in WSN for
reducing the fluctuations of RSS samples. In addition, in using the finding bound error
and lower bound variance algorithms, this approach reduces the number of particles
used when compared traditional methods.

Acknowledgments. This research is funded by Vietnam National University Ho Chi Minh City
(VNU-HCM) under grant number T2016-02-IT.

Fig. 4. Gap of mean number particles used vs. various Q and sample size variation in 20 trials
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