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Abstract. In this paper, we investigate energy harvesting decode-and-
forward relaying non-orthogonal multiple access (NOMA) networks.
Specifically, one source node wishes to transmit two symbols to its two
desired destinations directly and via the help of an intermediate energy
constraint relay node, and the NOMA technique is applied in the trans-
mission of both hops (from source to relay and from relay to destina-
tions). For performance evaluation, we derive the closed-form expressions
for the outage probability (OP) at D1 and D2. Our analysis is substanti-
ated via Monte Carlo simulation. The effect of several parameters, such
as power allocation factors in both transmissions in two hops, the power
splitting ratio, the location of relay node, to the outage performances at
two destinations is investigated.
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1 Introduction

Due to the significantly growing number of users and wireless devices, the future
5G networks are required to support the demand for low-latency, low-cost and
diversified services, yet at higher quality and a thousand-time faster data rate.
In the quest for new technologies, non-orthogonal multiple access (NOMA) tech-
nique has emerged as one of the most prominent candidates in meeting these
requirements. The use of NOMA can ensure a significant spectral efficiency as
it takes advantage of the power domain to serve multiple users at the same
time/frequency/code. In addition, compared with conventional multiple access,
NOMA offers better user fairness since even users with weak channel state infor-
mation (CSI) can be served in a timely manner.

NOMA in cooperative and cognitive radio networks has been pursued by
research groups from Princeton University, USA (Ding et al.) and Queen Mary
University of London, UK (Elkashlan et al.) with a focus on cooperative com-
munication protocols and performance analysis of cooperative networks [1] and
large-scale underlay cognitive radio networks [2] taking into account users?
geographical distribution. Specifically, in [1], the authors analyzed the outage
probability and diversity order under the assumption that users with better
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channel conditions can decode the message for the others, and proposed a coop-
erative NOMA transmission protocol. The work in [2] presented the closed-form
expression of outage probability to evaluate the system performance by using
stochastic-geometry. Also in this research stream, Men and Ge (Xidian Uni-
versity, China) proposed a NOMA-based downlink cooperative cellular system,
where the base station communicates with two paired mobile users through the
help of a half-duplex amplify-and-forward (AF) relay [3]. To investigate the per-
formance of the considered network, a closed-form expression of outage proba-
bility was derived and ergodic sum-rate was studied. By comparing NOMA with
conventional multiple access, the authors showed that NOMA can offer bet-
ter spectral efficiency and user fairness since more users are served at the same
time/frequency/spreading code. Furthermore, J.-B. Kim and I.-H. Lee’s research
group has investigated NOMA in cooperative networks and derived exact and
closed-form expressions of outage probability. The results showed that the sys-
tem performance is improved significantly with NOMA. Their system model
consists of one base station (BS) and two users, in which user 1 communicates
directly to the BS while user 2 communicates with the BS through the help of
user 1.

For NOMA with RF-EH, authors from Aristotle University have studied data
rates optimization and fairness increase in NOMA systems with wireless energy
harvesting based on time allocation [4]. The analytical and simulation results
indicated that this proposed method is better than TDMA scheme. Moreover,
the research group from Queen Mary University of London (UK) and Princeton
University (USA) proposed NOMA scheme in simultaneous wireless informa-
tion and power transfer (SWIPT) networks [5]. Specifically, near NOMA users
that are close to the source act as energy harvesting relays to help far NOMA
users. Furthermore, the authors investigated the performance of the considered
systems by deriving the closed-form expressions for outage probability and sys-
tem throughput under the random distribution of users’ location. Analytical and
simulation results showed that selecting users can reasonably reduce the outage
probability. Moreover, by carefully choosing the parameters of the network such
as transmission rate or power splitting coefficient, system performance can be
guaranteed even if the users do not use their own batteries to power the relay
transmission.

In this paper, we investigate energy harvesting DF NOMA relaying networks,
in which one source nodes want to transmit its two symbols to two destinations
directly and via the help of an energy constraint relay nodes. The relay harvests
the energy and decode the radio frequency (RF) signal from the source and for-
ward the encoded signal to two destinations. In addition, the NOMA technique
is considered for transmission in both hops from the source to relay and from
relay to destinations with two set of power allocation factor.

Notation: The notation CN (0, N0) denotes a circularly symmetric complex
Gaussian random variable (RV) with zero mean and variance N0. E {.} denotes
mathematical expectation. The functions fX (.) and FX (.) present the probabil-
ity density function (PDF) and cumulative distribution function (CDF) of RV
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X. The function Γ (x, y) is an incomplete Gamma function (Eq. 8.310.1 of [6]).
Ca

b = b!
a!(b−a)! . Notation Pr[.] returns the probability.

2 Network and Channel Models

As illustrated in Fig. 1, we consider a system model of a NOMA EH DF relaying
network, where a source node S want to transmit its two symbols x1 and x2

to two destination nodes D1 and D2, respectively, directly and via the help of
an intermediate EH relay nodes R. All nodes are equipped with single antenna
operating in half-duplex mode. In Fig. 1, (h1, d1), (h2, d2), (h3, d3), (h4, d4), and
(h5, d5) denote the Rayleigh channel coefficients over the distances for the links
between S and R, R and D1, R and D2, S and D1, and S and D2, respectively.
The corresponding channel gain gΩ

Δ= |hΩ |2 is exponential random variable
(RV) with parameter λΩ = (dΩ)β , with Ω ∈ {1, 2, 3, 4, 5} and β denote path-
loss exponent. The channel state information (CSI) is assumed to be known at
all nodes. The corresponding probability density function (PDF) and cumulative
distribution function (CDF) of each RV is fgΩ

(x) = λΩe−λΩx and FgΩ
(x) =

1 − e−λΩx, respectively. The power splitting architecture is apply at relay for
harvesting the energy with power splitting ratio ρ and (1 − ρ) for decoding the
source information.

The channels from S to R, from R to D1, and from R to D2 are denoted by
h1, h2 and h3, respectively. In the first phase, the source node S broadcast its
signal containing two symbols x1 and x2 as a form x =

√
a1Px1 +

√
a2Px2, with

E
{

|x|2 = 1
}

, P is a transmit power of source node, a1 and a2 respectively denote
the power allocation coefficient for symbols x1 and x2, and a1 +a2 = 1, a1 ≥ a2.
The received signals at relay R and two destinations D1 and D2, respectively,
given as

y1 = h1(
√

a1Px1 +
√

a2Px2) + na
1 (1)

y4 = h4(
√

a1Px1 +
√

a2Px2) + na
4 (2)

y5 = h5(
√

a1Px1 +
√

a2Px2) + na
5 (3)

where na
1 , na

4 , and na
5 ∼ CN (0, N0) denote the additive white Gaussian noise

(AWGN) at R, D1, and D2, respectively.
At relay R, the received signal y1 in (1) is split into two parts for energy

harvesting (y1,eh) and information decoding (y1,id):

y1,eh =
√

ρy1 = h1(
√

ρa1Px1 +
√

ρa2Px2) +
√

ρna
1 (4)

y1,id =
√

(1 − ρ)y1 = h1(
√

(1 − ρ)a1Px1 +
√

(1 − ρ)a2Px2) +
√

(1 − ρ)na
1 (5)
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Fig. 1. Network model for NOMA energy constraint DF relaying.

The harvested power at R can be obtained from (4) as:

PR = ηρa1P |h1|2 + ηρa2P |h1|2 = ηρP |h1|2 = ηρPg1 (6)

The received RF signals is sampled by RF-to-baseband conversion units.
Thus, the signals in (2), (3) and (5) are added with the noise nc ∼ CN (0, μN0),
with μ > 0, as

yc
4 = h4(

√
a1Px1 +

√
a2Px2) + na

4 + nc
4 (7)

yc
5 = h5(

√
a1Px1 +

√
a2Px2) + na

5 + nc
5 (8)

yc
1,id = h1(

√
(1 − ρ)a1Px1 +

√
(1 − ρ)a2Px2) +

√
(1 − ρ)na

1 + nc
1 (9)

First, to decode symbol x1, the relay R and two destinations D1 and D2 treat
x2 as noise. We obtain the signal to interference plus noise (SINR) for x1 at R,
D1, and D2, respectively, as

γx1
1 =

a1(1 − ρ)P |h1|2
a2(1 − ρ)P |h1|2 + (1 − ρ + μ)N0

=
a1(1 − ρ)γ0g1

a2(1 − ρ)γ0g1 + (1 − ρ + μ)
(10)

γx1
4 =

a1P |h4|2
a2P |h4|2 + (1 + μ) N0

=
a1γ0g4

a2γ0g4 + 1 + μ
(11)

γx1
5 =

a1P |h5|2
a2P |h5|2 + (1 + μ) N0

=
a1γ0g5

a2γ0g5 + 1 + μ
(12)

where γ0
Δ= P

N0
denote the transmit signal to noise (SNR).
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Second, the relay R and destination D2 decode symbol x2 by cancelling x1

with successive interference cancellation (SIC) from (9) and (8). The received
SNRs for x2 at R and D2 are respectively given as

γx2
1 =

a2(1 − ρ)P |h1|2
(1 − ρ)N0 + μN0

=
a2(1 − ρ)γ0g1

1 − ρ + μ
(13)

γx2
5 =

a2P |h5|2
(1 + μ)N0

=
a2γ0g5
1 + μ

(14)

In the second phase, after successfully decoded the symbols x1 and x2, relay R
forwards them to D1 and D2 as a form (

√
b1PRx1+

√
b2PRx2) with the transmit

power PR in (6), with b1 and b2 denote the power allocation coefficient (b1+b2 =
1, b1 ≥ b2). The base-band received signals at D1 and D2 are expressed as

y2 = h2(
√

b1PRx1 +
√

b2PRx2) + na
2 + nc

2 (15)

y3 = h3(
√

b1PRx1 +
√

b2PRx2) + na
3 + nc

3 (16)

where na
2 , n

a
3 ∼ CN (0, N0), nc

2, n
c
3 ∼ CN (0, μN0).

D1 decode its desired symbol (x1) by treating x2 as noise. From (15), the
SINR for decoding x1 at D1 is given as

γx1
2 =

b1PR|h2|2
b2PR|h2|2 + (1 + μ) N0

=
b1ηργ0g1g2

b2ηργ0g1g2 + 1 + μ
(17)

D2 decode its desired symbol (x2) after decoding x1 (with SINR γx1
3 =

b1PRg3
b2PRg3+(1+μ)N0

= b1ηργ0g1g3
b2ηργ0g1g3+1+μ ) and cancelling it. The SNR for decoding x2

at D2 is given as

γx2
3 =

b2PR|h3|2
(1 + μ)N0

=
b2ηργ0g1g3

1 + μ
(18)

3 Outage Probability Analysis

In this paper, the receiver decodes successfully the information if its SINR or
SNR satisfies the pre-defined threshold γt. In this section, we will derive the
outage probabilities at D1, D2 both cases of one relay and multiple relays under
relay selection scheme.

3.1 Outage Probability at D1

An outage event happens when D1 unsuccessfully decodes the symbol x1 both
from S in the first phase and from R in the second phase. The outage probability
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at D1 can be formulated as

OP 1relay
D1

= Pr [min (γx1
1 , γx2

1 ) < γt, γ
x1
4 < γt]︸ ︷︷ ︸

OP1

+ Pr [min (γx1
1 , γx2

1 ) � γt,max (γx1
4 , γx1

2 ) < γt]︸ ︷︷ ︸
OP2

(19)

Particularly, OP1 is the outage event for the case that R can not decode
successfully both x1 and x2 (min (γx1

1 , γx2
1 ) < γt), leading to R does not forward

the signal (
√

b1PRx1 +
√

b2PRx2) to destinations, and the destination D1 can
not decode successfully symbol x1 directly from S in the first phase (γx1

4 < γt).
OP2 is the outage event for the case that R decodes correctly both symbol x1

and x2 (min (γx1
1 , γx2

1 ) ≥ γt), but D1 can not decodes successfully x1 both from
S and R in the first and second phase, respectively (max (γx1

4 , γx1
2 ) < γt).

The term OP1 and OP2 can be obtain by substituting the SINRs and SNRs
in (10), (13), (11) and (17) into (19) as follows

OP1 = Pr

[
min

(
a1(1 − ρ)γ0g1

a2(1 − ρ)γ0g1 + (1 − ρ + μ)
,
a2(1 − ρ)γ0g1

1 − ρ + μ

)
< γt,

a1γ0g4

a2γ0g4 + 1 + μ
< γt

]

= Pr

[
a1γ0g4

a2γ0g4 + 1 + μ
< γt

]
Pr

[
min

(
a1(1 − ρ)γ0g1

a2(1 − ρ)γ0g1 + (1 − ρ + μ)
,
a2(1 − ρ)γ0g1

1 − ρ + μ

)
< γt

]

= Pr

[
g4 <

(1 + μ) γt

(a1 − a2γt) γ0

] {
1 − Pr

[
g1 � (1 − ρ + μ)γt

(a1 − a2γt) (1 − ρ)γ0
, g1 � (1 − ρ + μ) γt

a2(1 − ρ)γ0

]}

= Fg4

(
(1 + μ) γt

(a1 − a2γt) γ0

)
×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Fg1

(
(1 − ρ + μ)γt

(a1 − a2γt) (1 − ρ)γ0

)
if a1 − a2γt < a2

Fg1

(
(1 − ρ + μ) γt

a2(1 − ρ)γ0

)
if a1 − a2γt � a2

=

(
1 − e

− λ4ω1γt
(a1−a2γt)γ0

)
×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1 − e

− λ1ω2γt
(a1−a2γt)γ0

)
if a1 < a2 (1 + γt)

(
1 − e

− λ1ω2γt
a2γ0

)
if a1 � a2 (1 + γt)

(20)

where ω1 � 1 + μ, ω2 � 1−ρ+μ
1−ρ .

OP2 = Pr

⎡
⎢⎢⎢⎣
min

(
a1(1 − ρ)γ0g1

a2(1 − ρ)γ0g1 + (1 − ρ + μ)
,

a2(1 − ρ)γ0g1

1 − ρ + μ

)
� γt,

max

(
a1γ0g4

a2γ0g4 + 1 + μ
,

b1ηργ0g1g2

b2ηργ0g1g2 + 1 + μ

)
< γt

⎤
⎥⎥⎥⎦

= Pr

[
g4 <

(1 + μ) γt

(a1 − a2γt) γ0

]
Pr

⎡
⎢⎢⎢⎣

g1 � (1 − ρ + μ)γt

(a1 − a2γt) (1 − ρ)γ0
, g1 � (1 − ρ + μ) γt

a2(1 − ρ)γ0

b1ηργ0g1g2

b2ηργ0g1g2 + 1 + μ
< γt

⎤
⎥⎥⎥⎦

(21.1)
=

(
1 − e

− λ4(1+μ)γt
(a1−a2γt)γ0

)

×

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Pr

[
g1 � (1 − ρ + μ)γt

(a1 − a2γt) (1 − ρ)γ0
, g2 <

(1 + μ) γt

(b1 − b2γt) ηργ0g1

]
if a1 − a2γt < a2

Pr

[
g1 � (1 − ρ + μ) γt

a2(1 − ρ)γ0
, g2 <

(1 + μ) γt

(b1 − b2γt) ηργ0g1

]
if a1 − a2γt � a2



34 S. Q. Nguyen and D.-B. Ha

(21.2)
=

(
1 − e

− λ4ω1γt
(a1−a2γt)γ0

)

×

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e
− λ1ω2γt

(a1−a2γt)γ0 −
∞∑

k=0

1

k!

(
− λ1λ2ω3γt

(b1 − b2γt) γ0

)k

Γ

(
1 − k,

λ1ω2γt

(a1 − a2γt) γ0

)
if a1 < (1 + γt) a2

e
− λ1ω2γt

a2γ0 −
∞∑

k=0

1

k!

(
− λ1λ2ω3γt

(b1 − b2γt) γ0

)k

Γ

(
1 − k,

λ1ω2γt

a2γ0

)
if a1 � (1 + γt) a2

(21)

where ω3 � 1+μ
ηρ .

where (21.2) is obtained from (21.1) by using the result in AppendixA. Note
that we allocate the power coefficients a1, a2, b1, and b2 that (a1 − a2γt) > 0
and (b1 − b2γt) > 0 for OP1 and OP2 not equal to 0.

Finally, a closed-form expression for OP 1relay
D1

is derived by substituting (20)
and (21) into (19) as

OP 1relay
D1

=

(
1 − e

− λ4ω1γt
(a1−a2γt)γ0

)

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 −
∞∑

k=0

1

k!

(
− λ1λ2ω3γt

(b1 − b2γt)γ0

)k

Γ

(
1 − k,

λ1ω3γt

(a1 − a2γt) γ0

)
if a1 < (1 + γt) a2

1 −
∞∑

k=0

1

k!

(
− λ1λ2ω3γt

(b1 − b2γt)γ0

)k

Γ

(
1 − k,

λ1ω3γt

a2γ0

)
if a1 � (1 + γt) a2

(22)

3.2 Outage Probability at D2

In this paper, the desired symbol for destination is x2, thus D2 has to successfully
decode x1 first then using SIC to obtain x2. There are two cases for outage
happening at D2 that (i) both x1 and x2 can not be decoded successfully from
S and D2 in the first time slot ((min (γx1

1 , γx2
1 ) < γt,min (γx1

5 , γx2
5 ) < γt)), the

probability for this event is denoted by OP5; (ii) R detects correctly x1 and x2

transmitted from S in the first phase but D2 does not from both S and R in the
first and second phases, repsectively.

(Pr [min (γx1
1 , γx2

1 ) � γt,min (γx1
5 , γx2

5 ) < γt,min (γx1
3 , γx2

3 ) < γt]) ,this prob-
ability denoted by OP6. The outage probability at D can be formulated by:

OP 1 relay
D2

= Pr [(min (γx1
1 , γx2

1 ) < γt,min (γx1
5 , γx2

5 ) < γt)]︸ ︷︷ ︸
OP5

+ Pr [min (γx1
1 , γx2

1 ) � γt,min (γx1
5 , γx2

5 ) < γt,min (γx1
3 , γx2

3 ) < γt]︸ ︷︷ ︸
OP6

(23)
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The probabilities OP5 and OP6 can be obtained by substituting the SINRs
and SINRs γx1

1 , γx2
1 , γx1

5 , γx2
5 , γx1

3 , and γx2
3 into (23) as follows

OP5 = Pr
[
min

(
a1(1 − ρ)γ0g1

a2(1 − ρ)γ0g1 + (1 − ρ + μ)
,
a2(1 − ρ)γ0g1

1 − ρ + μ

)
< γt

]

︸ ︷︷ ︸
OP5.1

×Pr
[
min

(
a1γ0g5

a2γ0g5 + 1 + μ
,
a2γ0g5
1 + μ

)
< γt

]

︸ ︷︷ ︸
OP5.2

(24)

OP6 = Pr
[
min

(
a1γ0g5

a2γ0g5 + 1 + μ
,
a1γ0g5
1 + μ

)
< γt

]

︸ ︷︷ ︸
OP6.1

×Pr

⎡
⎢⎢⎣

min
(

a1(1 − ρ)γ0g1
a2(1 − ρ)γ0g1 + (1 − ρ + μ)

,
a2(1 − ρ)γ0g1

1 − ρ + μ

)
� γt,

min
(

b1ηργ0g1g3
b2ηργ0g1g3 + 1 + μ

,
b2ηργ0g1g3

1 + μ

)
< γt

⎤
⎥⎥⎦

︸ ︷︷ ︸
OP6.2

(25)

where OP5.1 can be obtained from OP1 as

OP5.1 =

⎧
⎪⎨
⎪⎩

(
1 − e

− λ1ω2γt
(a1−a2γt)γ0

)
if a1 < a2 (1 + γt)

(
1 − e− λ1ω2γt

a2γ0

)
if a1 � a2 (1 + γt)

(26)

OP5.2 = OP6.1 is expressed as

OP5.2 = OP6.1 = 1 − Pr
[
g5 � (1 + μ) γt

(a1 − a2γt) γ0
, g5 � (1 + μ) γt

a2γ0

]

=

⎧
⎪⎪⎨
⎪⎪⎩

Fg5

(
(1 + μ) γt

(a1 − a2γt) γ0

)
if a1 − a2γt < a2

Fg5

(
(1 + μ) γt

a2γ0

)
if a1 − a2γt � a2

=

⎧
⎪⎨
⎪⎩

(
1 − e

−λ5ω1γt
(a1−a2γt)γ0

)
if a1 < a2 (1 + γt)

(
1 − e

−λ5ω1γt
a2γ0

)
if a1 � a2 (1 + γt)

(27)



36 S. Q. Nguyen and D.-B. Ha

OP6.2 is derived from AppendixB as

OP6.2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e
− λ1ω2γt

(a1−a2γt)γ0 −
∞∑

k=0

1

k!

(
−

λ1λ3ω3γt

(b1 − b2γt) γ0

)k

Γ

(
1 − k,

λ1ω2γt

(a1 − a2γt) γ0

)
, if

⎧
⎨
⎩

b1 < b2 (1 + γt)

a1 < a2 (1 + γt)

e
− λ1ω2γt

(a1−a2γt)γ0 −
∞∑

k=0

1

k!

(
−

λ1λ3ω3γt

b2γ0

)k

Γ

(
1 − k,

λ1ω2γt

(a1 − a2γt) γ0

)
, if

⎧
⎨
⎩

b1 � b2 (1 + γt)

a1 < a2 (1 + γt)

e
− λ1ω2γt

a2γ0 −
∞∑

k=0

1

k!

(
−

λ1λ3ω3γt

(b1 − b2γt) γ0

)k

Γ

(
1 − k,

λ1ω2γt

a2γ0

)
, if

⎧
⎨
⎩

b1 < b2 (1 + γt)

a1 � a2 (1 + γt)

e
− λ1ω2γt

a2γ0 −
∞∑

k=0

1

k!

(
−

λ1λ3ω3γt

b2γ0

)k

Γ

(
1 − k,

λ1ω2γt

a2γ0

)
, if

⎧
⎨
⎩

b1 � b2 (1 + γt)

a1 � a2 (1 + γt)

(28)

The outage probability at D2 in the case of one relay can be obtained by
substituting the equations from (24) to (28) into (23) as

OP
1 relay
D2

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝1 − e

− λ5ω1γt
(a1−a2γt)γ0

⎞
⎟⎠
⎡
⎣1 −

∞∑

k=0

1

k!

(
−

λ1λ3ω3γt

(b1 − b2γt) γ0

)k

Γ

(
1 − k,

λ1ω2γt

(a1 − a2γt) γ0

)⎤
⎦ , if

⎧
⎨
⎩

b1 < b2 (1 + γt)

a1 < a2 (1 + γt)

⎛
⎜⎝1 − e

− λ5ω1γt
(a1−a2γt)γ0

⎞
⎟⎠
⎡
⎣1 −

∞∑

k=0

1

k!

(
−

λ1λ3ω3γt

b2γ0

)k

Γ

(
1 − k,

λ1ω2γt

(a1 − a2γt) γ0

)⎤
⎦ , if

⎧
⎨
⎩

b1 � b2 (1 + γt)

a1 < a2 (1 + γt)

⎛
⎜⎝1 − e

− λ5ω1γt
a2γ0

⎞
⎟⎠
⎡
⎣1 −

∞∑

k=0

1

k!

(
−

λ1λ3ω3γt

(b1 − b2γt) γ0

)k

Γ

(
1 − k,

λ1ω2γt

a2γ0

)⎤
⎦ , if

⎧
⎨
⎩

b1 < b2 (1 + γt)

a1 � a2 (1 + γt)

⎛
⎜⎝1 − e

− λ5ω1γt
a2γ0

⎞
⎟⎠
⎡
⎣1 −

∞∑

k=0

1

k!

(
−

λ1λ3ω3γt

b2γ0

)k

Γ

(
1 − k,

λ1ω2γt

a2γ0

)⎤
⎦ , if

⎧
⎨
⎩

b1 � b2 (1 + γt)

a1 � a2 (1 + γt)

(29)

4 Result and Disscussion

This section provide result and discussion of the outage performance at both
D1 and D2 in both cases of one and N relays via Monte Carlo simulation
and theoretical results. In a two-dimensional plane, the corrdinates of the
source S, the destinations D1, D2, and the cluster of relays are (0, 0), (1, 0.3),
(0.8,−0.3), and (xR, 0), respectively. Hence, we obtain the normalize distances
d1 = |xR|, d2 =

√
(1 − xR)2 + 0.32, d3 =

√
(0.8 − xR)2 + 0.32, d4 =

√
1 + 0.32,

d5 =
√

0.82 + 0.32. We assume that the path-loss exponent β = 3, the target
γt = 1, and μ = 1.

In Fig. 2, the outage probabilities at D1 and D2 versus power splitting ratio
ρ ∈ (0.1, 0.9) (for relay located between source and destinations) are investigated.
It can be seen that at ρ around 0.7, the outage performances of almost cases
in this scenario are obtained the best performance because it is the optimal
position for relay to decode information and harvest energy from source in the
first phase and forward information to destination in the second phase. We note
that D2 locates nearer the source and relay than D1 does, therefore the outage
performance at D2 is better than D1 in the case of the power allocation for
symbol x2 and x1 is nearly similar like (a1, a2) = (b1, b2) = (0.6, 0.4), but in the
case that the power allocation for x1 is much higher than that for x2, the outage
performance at D1 is higher than that at D2.
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Fig. 2. Effect of power allocation a1, a2, b1, and b2 on the outage probability at D1

and D2 versus ρ, when xR = 0.4, γ0 = 15 dB, ρ = 0.5, and η = 0.9.

5 Conclusions

In this paper, we consider energy harvesting technique in the NOMA relaying
networks. Partial relay selection scheme is applied to improve the system perfor-
mance. The closed-form expressions of the outage probability are presented to
evaluation and comparison of the performance at two destinations in both cases
of single and multiple relays. These theoretical expressions are derived using the
Monte Carlo simulation method. The theoretical results match the simulation
results well.

A Appendix A: Finding the Closed-Form of Probability

Pr
[
g1 � u1, g2 < u2

g1

]

By using the PDF of RV g1 and CDF of RV g2, the probability
Pr

[
g1 � u1, g2 < u2

g1

]
can be obtained as
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Pr
[
g1 � u1, g2 <

u2

g1

]
=

∞∫

u1

fg1 (x)Fg2

(u2

x

)
dx

=

∞∫

u1

λ1e
−λ1x

(
1 − e− λ2u2

x

)
dx

= e−λ1u1 −
∞∫

u1

λ1e
−λ1xe− λ2u2

x dx

︸ ︷︷ ︸
I1

(A.1)

To calculate the integral I1, we first apply the Eq. 1.211 of [6]: ex =
∞∑

k=0

xk

k! to the term e− λ2u2
x to obtain (A.2.1), then using Eq. 3.381.3 of [6]:

∫ ∞
u

xv−1e−μxdx = 1
μv Γ (v, μu) to obtain (A.2.2) as follows

I1
(A.2.1)

= λ1

∞∑
k=0

1
k!

(−λ2u2)
k

∞∫

u1

e−λ1x

(x)k
dx

(A.2.2)
=

∞∑
k=0

1
k!

(−λ1λ2u2)
k
Γ (1 − k, λ1u1)

(A.2)

By substituting (A.3) into (A.1), we obtain:

Pr
[
g1 � u1, g2 <

u2

g1

]
= e−λ1u1 −

∞∑
k=0

1
k!

(−λ1λ2u2)
k
Γ (1 − k, λ1u1) (A.3)

B Appendix B: Proof of Eq. (28)

First, for the case of a1 < a2 (1 + γt), the probability OP6.2 in (25) can be
rewritten as

OP6.2|a1<a2(1+γt) = Pr

⎡

⎣
g1 ≥ (1−ρ+μ)γt

(a1−a2γt)(1−ρ)γ0

min
(

b1ηργ0g1g3
b2ηργ0g1g3+1+μ

, b2ηργ0g1g3
1+μ

)
< γt

⎤

⎦

= Pr

[
g1 ≥ (1−ρ+μ)γt

(a1−a2γt)(1−ρ)γ0
b1ηργ0g1g3

b2ηργ0g1g3+1+μ
< b2ηργ0g1g3

1+μ
, b1ηργ0g1g3

b2ηργ0g1g3+1+μ
< γt

]

+Pr

[
g1 ≥ (1−ρ+μ)γt

(a1−a2γt)(1−ρ)γ0
b1ηργ0g1g3

b2ηργ0g1g3+1+μ
≥ b2ηργ0g1g3

1+μ
, b2ηργ0g1g3

1+μ
< γt

]

= Pr

⎡

⎣
g1 ≥ (1−ρ+μ)γt

(a1−a2γt)(1−ρ)γ0

g3 >
(b1−b2)(1+μ)

(b2)
2ηργ0g1

, g3 <
(1+μ)γt

(b1−b2γt)ηργ0g1

⎤

⎦

︸ ︷︷ ︸
OP6.2.1

+Pr

⎡

⎣
g1 ≥ (1−ρ+μ)γt

(a1−a2γt)(1−ρ)γ0

g3 ≤ (b1−b2)(1+μ)

(b2)
2ηργ0g1

, g3 <
(1+μ)γt
b2ηργ0g1

⎤

⎦

︸ ︷︷ ︸
OP6.2.2

(B.1)
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where OP6.2.1 and OP6.2.2 are given as

OP6.2.1 =

⎧
⎪⎪⎨
⎪⎪⎩

∞∫
ω2γt

(a1−a2γt)γ0

fg1 (x)

[
Fg3

(
ω3γt

(b1−b2γt)γ0x

)
− Fg3

(
(b1−b2)ω3
(b2)2γ0x

)]
dx, if b1 < b2 (1 + γt)

0 if b1 ≥ b2 (1 + γt)

(B.2)

OP6.2.2 =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pr

⎡
⎣

g1 ≥ ω2γt
(a1−a2γt)γ0

g3 ≤ (b1−b2)ω3
(b2)2γ0g1

⎤
⎦ if b1 < b2 (1 + γt)

Pr

[
g1 ≥ ω2γt

(a1−a2γt)γ0
g3 <

ω3γt
b2γ0g1

]
if b1 ≥ b2 (1 + γt)

=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞∫
ω2γt

(a1−a2γt)γ0

fg1 (x)

[
Fg3

(
(b1−b2)ω3
(b2)2γ0g1

)]
dx, if b1 < b2 (1 + γt)

∞∫
ω2γt

(a1−a2γt)γ0

fg1 (x)
[
Fg3

(
ω3γt

b2γ0g1

)]
dx, if b1 ≥ b2 (1 + γt)

(B.3)

By substituting (B.2) and (B.3) into (B.1), and using the result in
AppendixA, we obtain

OP6.2|a1<a2(1+γt)
= OP6.2.1 + OP6.2.2

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞∫
ω2γt

(a1−a2γt)γ0

fg1 (x)
[
Fg3

(
ω3γt

(b1−b2γt)γ0g1

)]
dx, if b1 < b2 (1 + γt)

∞∫
ω2γt

(a1−a2γt)γ0

fg1 (x)
[
Fg3

(
ω3γt

b2γ0g1

)]
dx, if b1 ≥ b2 (1 + γt)

= e
− λ1ω2γt

(a1−a2γt)γ0 −

⎧
⎪⎪⎨
⎪⎪⎩

∞∑
k=0

1
k!

(
− λ1λ3ω3γt

(b1−b2γt)γ0

)k
Γ
(
1 − k,

λ1ω2γt
(a1−a2γt)γ0

)
, if b1 < b2 (1 + γt)

∞∑
k=0

1
k!

(
− λ1λ3ω3γt

b2γ0

)k
Γ
(
1 − k,

λ1ω2γt
(a1−a2γt)γ0

)
, if b1 ≥ b2 (1 + γt)

(B.4)

Next, we can obtain the result for OP6.2 in the case of a1 ≥ a2 (1 + γt) from
(B.4) with replacing ‘(a1 − a2γt)’ by ‘a2’ as

OP6.2|a1≥a2(1+γt)
= e

− λ1ω2γt
a2γ0 −

⎧⎪⎪⎨
⎪⎪⎩

∞∑
k=0

1
k!

(
− λ1λ3ω3γt

(b1−b2γt)γ0

)k
Γ
(
1 − k,

λ1ω2γt
a2γ0

)
, if b1 < b2 (1 + γt)

∞∑
k=0

1
k!

(
− λ1λ3ω3γt

b2γ0

)k
Γ
(
1 − k,

λ1ω2γt
a2γ0

)
, if b1 ≥ b2 (1 + γt)

(B.5)

By combining (B.4) and (B.5), we finish the proof for Eq. (28).
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