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Abstract. Smart city solutions are often formulated as adaptive opti-
mization problems in which a cost objective function w.r.t certain con-
straints is optimized using off-the-shelf optimization libraries. Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES) is an efficient
derivative-free optimization algorithm where a black-box objective func-
tion is defined on a parameter space. This modeling makes its perfor-
mance strongly depends on the quality of chosen features. This paper
considers modeling the input space for optimization problems in repro-
ducing kernel Hilbert spaces (RKHS). This modeling amounts to func-
tional optimization whose domain is a function space that enables us
to optimize in a very rich function class. Our CMA-ES-RKHS frame-
work performs black-box functional optimization in the RKHS. Adaptive
representation of the function and covariance operator is achieved with
sparsification techniques. We evaluate CMA-ES-RKHS on simple func-
tional optimization problems which are motivated from many problems
of smart cities.

Keywords: Functional optimization · Smart city · Cross-entropy
Covariance matrix adaptation evolution strategy

1 Introduction

The smart city initiative uses information and communication technology (ICT)
and Internet of things (IoT) solutions to manage a city’s assets, e.g. transporta-
tion systems, grid networks, schools, hospitals, etc. The goal is to build a smart
city that improves the quality of life and the efficiency of services. These goals
are often realized as a cost objective function of energy, price, consumption,
user’s comfort, and so on [3]. Optimizing such an objective can be handled via
various optimization libraries depending on different situations. The covariance
matrix adaptation evolutionary strategy (CMA-ES) is a derivative-free method
[12] that is a practical optimizer for continuous optimization problems. It is
a general optimization framework that possesses many appealing characteris-
tics, e.g. derivative-free, covariant, off-the-shelf, scalable etc. It is especially
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useful on problems that are non-convex, non-separable, ill-conditioned, multi-
modal, and with noisy evaluations. Applying CMA-ES requires explicitly a finite-
dimensional search space on which solution candidates live. CMA-ES has been
used to solve problems in power prediction for smart grid [15], driver assistance
[6], smart transportation (which used evolutionary algorithm as a special form of
CMA-ES) [2,24], metro regenerative energy [7], etc. In the context of robotics,
CMA-ES has been widely used in many tasks: biped locomotion [31], whole-body
locomotion optimization [8,9], swimming [26], skill learning via reinforcement
learning [13,14,25], inverse reinforcement learning [5,21], etc.

Applying CMA-ES requires explicitly a finite-dimensional search space on
which solution candidates live. In many domains, e.g. robotics, an optimiza-
tion objective is often defined as a function of another parametric function. For
instance, it might be an overall cost function depending on a robot controller,
e.g. robot skill learning [25], policy search [14], or a loss function in the contexts
of inverse optimal control [5,21], etc.

In this work, we propose CMA-ES-RKHS that enables functional optimiza-
tion over a non-parametric solution space. Specifically, we assume that the solu-
tion space is a reproducing kernel Hilbert space (RKHS). Each candidate is a
function in RKHS. Modeling the solution space this way, CMA-ES-RKHS can
not only inherit full characteristics from CMA-ES, but also enjoy other appeal-
ing properties. Firstly, CMA-ES-RKHS is able to optimize a functional objec-
tive whose domain is a RKHS. That means the solution space does not need
to depend on any manual parametrization. Secondly, by modeling the solution
space in RKHS, all updates step in CMA-ES-RKHS are handled analytically.
We show that updated mean functionals, other intermediate terms, evolution
path functionals or conjugate evolution path functionals are functions in the
underlying RKHS. Moreover, the updated covariance is also an operator on the
underlying RKHS. Thirdly, via sparsification in RKHS, a very complex search
space can be represented compactly, however we can still achieve a solution of
guaranteed quality.

2 Covariance Matrix Adaptation - Evolution Strategy

The Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) is a global
optimization method introduced by [12]. It works by forming a parametric distri-
bution over the solution space, e.g. the space of policy parameter in policy search,
or the space of parameters of the loss function in inverse optimal control, etc.
It iteratively samples a population of solution candidates from a parametrized
search distribution. These candidates are then evaluated by a black-box function.
Tuples of candidate-evaluation make up a dataset in order for CMA-ES to update
the search distribution, i.e. its mean and its covariance matrix. Specifically, a
cost function f(θ) is parametrized by a parameter space θ ∈ �n, f : �n �→ �.
It is common that a CMA-ES algorithm maintains a multi-variate Gaussian
distribution over the solution space as θ ∼ N (θ;m,C). At each iteration k,
it generates the kth population of λ candidates from the kth distribution as
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Algorithm 1. The CMA-ES algorithm
1: Initialize m ∈ �n, σ ∈ �+, λ, μ
2: Initialize C = I,pc = 0,pσ = 0
3: while (not terminate) do
4: Sampling: θi = m + σyi, yi ∼ N (0,C), i = 1, . . . , λ
5: Evaluating: f(θi), i = 1, . . . , λ
6: // mean update
7: m ← m + σȳ, where ȳ =

∑μ
1 wiyi:λ

8: // step-size control update

9: pσ ← (1 − cσ)pσ +
√

cσ(2 − cσ)μwC
− 1

2 ȳ

10: σ ← σ exp
(

cσ
dσ

(
‖pσ‖

E‖N (0,I)‖ − 1
))

11: // covariance matrix update
12: pc ← (1 − cc)pc +

√
cc(2 − cc)μwȳ

13: C ← (1 − c1 − cμ)C + c1pcp
�
c + cμ

∑μ
1 wiyi:λy

�
i:λ

14: end while

θi ∼ N (θ;mk,Ck), i = 1, · · · , λ. Then, the candidates are sorted ascendingly
according to their evaluations f(θi). Only the first μ best candidates are selected
for use in updates of mk and Ck. Another parameter is the global step-size σ ∈ �
that controls the convergence rate of the covariance matrix update. The param-
eter σ is defined as a global standard deviation. Hence, a full set of parameters
in CMA-ES is {m,C, σ}.

In Algorithm 1, we give a full summary of the CMA-ES algorithm. The
updated mean is a weighted sum of the best μ candidates as in step 7, in which
the weights wi are set to 1/μ or to a better values log(μ/2)− log(i). The notation
yi:λ means the best candidate out of yi, . . . ,yλ. The covariance matrix update in
step 13 consists of three parts: old information, rank-1 update which computes
the change of the mean over time as encoded in the evolution path pc, and rank-
μ update which takes into account the good variations in the last population.
This step-size control update constraints the expected changes of the distribu-
tion. Thus, this update in step 10 is based on the conjugate evolution path pσ. It
targets to accelerate convergence to an optimum, and meanwhile prevents pre-
mature convergence. The other parameters: μw is the variance effective selection
mass, c1, cc, cσ are learning rates, and dσ is a damping factor for σ. The setting
of these parameters is well studied and discussed in-depth in [10].

The updates of CMA-ES can alternatively be derived using the information-
geometric concept of a natural gradient as shown in [11], which shares the same
insight with the natural evolution strategies (NES) [32].

There are less efficient techniques that can also adapt the covariance matrix:
estimation of distribution algorithms (EDA) and the cross-entropy method
(CEM). The major difference from CMA-ES is at the choice of the reference
mean value. EDA and CEM estimate the variance within the current popula-
tion, y1:λ, instead of exploiting old information as encoded in previous C and pc.
Specifically, for the Gaussian search distribution, analytic updates at iteration
k for EDA and CEM [19,20] change steps 9 and 13 in Algorithm 2 to
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m(k) =
1
μ

μ∑

i=1

θi

C(k)
EDA =

1
μ

μ∑

i=1

(
θi − m(k)

)(
θi − m(k)

)�

C(k)
CEM =

μ

μ − 1
C(k)

EDA

The difference between EDA and CEM is: EDA updates the empirical covariance
matrix, meanwhile CEM updates the unbiased empirical covariance matrix.

3 CMA-ES in Reproducing Kernel Hilbert Space

3.1 Problem Statement

We consider a functional optimization problem [28] that finds the maximum of
an unknown functional f : H �→ �, where H = {h : X �→ �} is a separable
Hilbert space of input real-valued functions with a domain X . Assuming that
H is specifically a square-integrable function space L2(X , μ) w.r.t a probability
measure μ. For each queried function h ∈ H, an evaluation y = f(h) is returned.

3.2 CMA-ES in RKHS

We propose a new general-purposed CMA-ES-RKHS framework that solves the
above problem. We explicitly assume the function space H is a reproducing
kernel Hilbert space (RKHS) associated with a kernel K. Each h ∈ H is defined
as a mapping from an arbitrary space X to Y, h : X �→ Y. The function space
H may be a vector-valued RKHS, denoted as HK , [17] with the kernel K :
X × X �→ L(Y), where L(Y) is the space of linear operators on Y. For example,
when X = �n the simplest choice of K might be K(x, x′) = κ(x, x′)In, where In
is an n × n identity matrix, and κ is a scalar-valued kernel [22]. Each function
h ∈ H is then represented as a linear span of finite elements {xi, yi} as

h(·) =
∑

i

K(xi, ·)yi (1)

Now we define a search distribution over H. A direct extension of paramet-
ric CMA-ES is to use a Gaussian process over the solution function h, h ∼
GP(m,σ2C), where m is a mean function, C is a covariance operator, and σ is a
scalar global step-size. We discuss now how to update the functionals {m,C} and
the parameter σ in our CMA-ES-RKHS framework, which is also summarized
in Algorithm 2.
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Algorithm 2. The CMA-ES-RKHS algorithm
1: Initialize m ∈ HK , σ ∈ �+, λ, μ
2: Initialize C = δ(·, ·), pc ∈ HK , pσ ∈ HK

3: while (not terminate) do
4: Sampling : g̃i ∼ GP(0, C), i = 1, . . . , λ
5: Via kernel regression: for each g̃i, fit a function gi ∈ HK

6: Set samples: hi = m + σ(t)gi

7: Evaluating : fi = f(hi), i = 1, . . . , λ
8: // mean update
9: m ← m + σḡ, where ḡ =

∑μ
1 wigi:λ

10: // step-size control update

11: pσ ← (1 − cσ)pσ +
√

cσ(2 − cσ)μwC− 1
2 ḡ

12: σ ← σ exp
(

cσ
dσ

(
‖pσ‖

E‖GP(0,δ(·,·))‖ − 1
))

13: // covariance matrix update
14: pc ← (1 − cc)pc +

√
cc(2 − cc)μw ḡ

15: C ← (1 − c1 − cμ)C + c1pc ⊗ pc + cμ

∑μ
1 wigi:λ ⊗ gi:λ

16: Sparsify m, C and derive C− 1
2

17: end while

Mean Function Update in RKHS. Assuming that at iteration k, we can
sample a set of λ functions g̃i ∼ GP(0, C) (Step 4), many sampling techniques
are basically described in [18]. Our following derivation is not restricted to which
kernel, vector-valued or scalar-valued, is used. A sample from a Gaussian process
is not in HK with probability of 1, as discussed in detail by [1]. For any sampling
techniques of a Gaussian process, we receive g̃i in a form of data tuples (x(i), y(i))
from which we can use kernel ridge regression with the covariance operator C(·, ·)
(Step 5). Hence, in our framework each function g̃i is approximated by a function
gi ∈ HK . As a result, a new function candidate sampled from the function
distribution is hi = m + σgi. The new mean function is updated as (Step 9),

m = m + σ

μ∑

i=1

wig1:λ ∈ HK (2)

where the weights wi satisfy
μ∑

i=1

wi = 1, w1 ≥ w2 ≥ · · · ≥ wμ > 0

As a result, after the update the new functional mean is an element in HK . We
denote ḡ as

ḡ =
μ∑

i=1

wig1:λ

There are a number of settings for w, which might inherit from CMA-ES, such
as: wi = 1/μ, wi ∝ μ − i + 1; or wi = log(μ + 1

2 ) − log(i). In our experiment, we
implement the last choice.
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Covariance Operator Update. The covariance operator update is based on
the best selected candidate functions, based on their evaluations f(hi). Hence an
empirical estimate of the covariance operator C on HK , called rank-μ update, is

C = (1 − cμ)C + cμ

μ∑

i=1

wigi:λ ⊗ gi:λ

Similar to parametric CMA-ES, we also consider the change of the mean function
over time by estimating a functional evolution path pc as (Step 14),

pc = (1 − cc)pc +
√

cc(2 − cc)μwḡ ∈ HK (3)

This is low-pass filtered of chosen steps ḡ, hence pc is also an element in RKHS
HK . As a result, a complete update of the covariance operator that combines
both rank-1 and rank-μ is computed as (Step 15),

C = (1 − cμ − c1)C + c1pcp
�
c + cμ

μ∑

i=1

wigi:λ ⊗ gi:λ (4)

where cc is the backward time horizon for the functional evolution path pc,
c1, cμ are learning rates of rank-1 and rank-μ respectively, and μw is a variance-
effectiveness constant. This reduces to a rank-1 update if c1 = 1, cμ = 0. Simi-
larly, the update becomes a rank-μ update when c1 = 0, cμ = 1.

Step-Size Update. The global step-size σ is adapted through the computation
of a functional conjugate evolution path as (Step 11),

pσ = (1 − cσ)pσ +
√

cσ(2 − cσ)μeffC− 1
2 ḡ (5)

where cσ is a backward time horizon for the conjugate evolution path pσ. Accord-
ing to the bounded inverse theorem in functional analysis [4], C as computed in
Eq. 4 is a linear operator in the RKHS HK , hence it has a bounded inverse C−1.
Therefore, pc is updated in a way that renders it an element in HK . The volume
and the correlation of the selected steps are compared to the expected value of
the standard Gaussian process with a Dirac kernel. The fact that the former
is larger than the latter makes σ increased, otherwise decreased. The update
formula of σ (Step 12) is

σ = σ exp
(

cσ

dσ

( ‖pσ‖
E‖GP(0, δ(·, ·))‖ − 1

))
(6)

The term E‖GP(0, δx)‖ can be computed in advance using Monte-Carlo
simulations

E‖GP(0, δ(·, ·))‖HK
≈ 1

N

N∑

i=1

〈gi(·), gi(·)〉HK

where gi(·) is a function in HK approximated (via kernel ridge regression) from
a sample g̃i drawn from GP(0, δ(·, ·)).
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Sparsification and Adaptive Representation. We now discuss implemen-
tation concerns of the CMA-ES-RKHS algorithm. The first and most critical
one is the representation issue of mean functions m and covariance operators C.
Then, it follows with discussions of parameter setting in CMA-ES-RKHS. Then
we discuss how to deal with the update rule in Eq. 5 that involves to find the
inverse operator C− 1

2 .
In general, we can use the kernel matching pursuit algorithm [30] to sparsify

C. However, we aim to look for a method that will both sparsify C and together
compute the inverse square root operator C− 1

2 . Therefore, we propose to use the
kernel PCA method (kPCA) from [23] for achieving efficiently and fast both a
sparse and compact covariance operator and its inverse square root operator.

4 Experiments

We evaluate the advantages and general applications of CMA-ES-RKHS on two
optimization problems: a synthetic functional optimization, and a power pre-
diction scenario. We compare the behavior of CMA-ES-RKHS with other three
base-line methods: the standard CMA-ES, the adaptive CMA-ES version (CMA-
ES-A), and the functional gradient techniques. In all experiments, we use the
RBF kernel where the bandwidths are set using median-trick. These experiments
aim to evaluate the proposed CMA-ES-RKHS for: (i) the quality of the returned
compact solution function, (ii) the flexibility and the power of our proposed
method in capturing a complex solution function which can not be found easily
by existing methods, and (iii) the applicability in practice.

4.1 Synthetic Domains

We design an unknown 2-dimensional functions f∗. This function is a mixture
of two (multi-variate) Gaussians. All optimizers are tasked to find a function
h : X �→ �, where h ∈ HK that minimizes the objective function as a square
distance

J(h) =
∫ xT

x0

(
f∗(x) − h(x)

)2
dx (7)

where x ∈ �2. This task is a simplified version of many similar problems in
machine learning and robotics, e.g. regularized risk functional [22], trajectory
optimization [27,29], trajectory optimization in RKHS [16], loss minimization
inverse optimal control [5], etc. However, these work must rely on discretization
and parametric modeling.

Functional Gradient: Using functional gradient requires to know J and have
access to the ground-truth function f∗ (CMA-ES-RKHS only accesses to evalu-
ations J(h)) from which we are able use discretization to approximate J as

J(h) ≈
T∑

k=0

(
f∗(xk) − h(xk)

)2
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The functional gradient can be computed as

∇hJ(h) =
T∑

k=0

2
(
h(xk) − f∗(xk)

)
K(tk, ·)

Thus, a functional gradient update is

h ← h + α∇hJ(h)

A sparsification technique [30] can be used to achieve a compact representation of
h which renders the functional gradient approach an adaptive method too. That
means the representation of h will be adaptively adapted to best approximate
f∗. Hence, discretization is required to be fine enough (T is large enough, we
used T � N) to guarantee accurate approximation.

CMA-ES: We assume that a parametric representation of h as a linear expan-
sion of N features

h(x) =
N∑

k=1

wkφk(x) = w�φ(x)

We use RBF features φk(x) = exp(−‖x − xt‖2/σ2) in which N centers xt are
regular intervals in the domain of x. Hence we apply CMA-ES to optimize J in
a parameter space w ∈ �N . CMA-ES-A would optimize over a search space of
{w, {xt}N

t=1}.

Results: For all optimizers, we use the same number N of features in CMA-ES
and CMA-ES-A, and centres after sparsification in CMA-ES-RKHS and func-
tional gradient methods, N = 100. We use a standard way of CMA-ES to initial-
ize other parameters, N is the effective dimensionality in CMA-ES-RKHS. The
results are reported w.r.t the number of evaluations, i.e. queries to the objective
function.

We report the squared error J and the solution function in Figs. 2 and 3. We
create two versions for CMA-ES-A, one with good initialization (initial values
of xt are centres for CMA-ES) and one with random initialization, called CMA-
ES-A-R. CMA-ES-A performs much worse than our method. This is explained
by the way our method approaches from a principled way, i.e. kernel methods,
for the scaling of parameters. The functional gradient method performs very well
which re-confirms that it can be very competitive when gradient information is
known (in this case the form of J(h) is known). Figure 2 shows very interesting
results where other methods like CMA-ES and CMA-ES-A are still struggling
around the optimal regions.

4.2 Power Prediction Scenarios

In this section, we apply CMA-ES-RKHS for prediction of power demand by
designing a simulated scenario in which one nation’s electricity consumption
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Fig. 1. Power Prediction Scenarios: (left) squared error, (right) solution functions (x-
axis: time; y-axis: scaled consumption in mega-watt)
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Fig. 2. Solution functions: contours of levels equivalent to the first and second devia-
tions

is given by an unknown function f∗ : � �→ � where it maps a moment in
continuous time to a real value of mega-watt (MW). The goal is to use a black-
box optimization method to estimate that unknown function. For this task, we
will also look for an estimate function h that minimizes the least square term
J as introduced in Eq. 7. This objective is similar to the work in [15] in which
they fit a parametric function over a statistical data.

We also design the unknown consumption function f∗ as a mixture of two
univariate Gaussians, called the ground-truth function. We use N = 10 for this
task. We report the squared error J and the solution function in Fig. 1. The per-
formance of CMA-ES-A-R is very bad in terms of error. As demonstrated on the
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right picture, it can detect only one mode of the optimal function. One remark-
able note is that CMA-ES initialization does not consists of two correct modes in
its set of centres, hence it gives poor approximation error. With adaptive ability,
CMA-ES-A and CMA-ES-RKHS are able to estimate the true modes correctly.

5 Conclusion

This paper proposes a CMA-ES-RKHS framework that enables functional opti-
mization where the search is handled over a function space. The fact that the
function space is modeled in reproducing kernel Hilbert space results in ana-
lytic update rules for CMA-ES-RKHS. On the other hand, the solution function
attains compactness and flexibility characteristics. Our experiments show that
CMA-ES-RKHS is able to represent a complex solution function compactly and
adaptively. The result shows many interesting aspects and results of CMA-ES-
RKHS: (i) explicitly handling functional optimization in principle; (ii) overcom-
ing the issue of hand-designed feature functions in many practical applications
of CMA-ES.
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