
Toward a Real-Time Development
and Deployment of IoTs Application for Smart

Garden on OpenStack Cloud

Dang Huynh-Van, Khanh Tran-Quoc, and Quan Le-Trung(&)

Department of Computer Networks, University of Information Technology,
Viet Nam National University, Ho Chi Minh City, Vietnam

{13520180,13520388}@gm.uit.edu.vn, quanlt@uit.edu.vn

Abstract. While lots of Internet of Things (IoTs) applications have been
designed and implemented for many areas, especially for the ambient-assisted
living domain, real-time development and deployment of those IoTs applica-
tions have still been an open issue. This paper focuses on such an open issue
through our developed web-based IoTs application for a smart garden, be
integrated into and managed via the OpenStack Infrastructure at University of
Information Technology (UiT). An intelligent model applying fuzzy logic to
process measured data for the smart garden, has also developed to give useful
information on keeping plants growing, monitoring, and taking care of plants
more easily and effectively. Load-balance network architecture on cloud is used
to deal with the scalability, availability of the deployed system.

Keywords: Wireless sensor network � Smart model � Fuzzy logic controller
Smart garden � TinyOS � Collection Tree Protocol

1 Introduction

Nowadays, Internet of Things (IoTs) is one of the newest research topics all over the
world. Lots of research have been focused on such a domain to develop more creative
products to enhance our life quality. IoTs applications appear in a lot of different
domains [1], e.g., health care, industry, environment monitoring, weather forecast,
transportation as well as agriculture. In smart agriculture field, there are lots of systems
based on IoTs. These systems have been developed to solve many practical problems in
the modern agriculture domain, e.g., environmental monitoring, soil parameters mon-
itoring, automatically watering, etc. For example, in “Smart Rabbit Farm” [2], there is
an IoT-based application to monitor the rabbit farm conditions with various sensors. On
this system, the authors also used the cloud network infrastructure to store the collected
data and after that visualizing these environmental parameters as well as useful noti-
fications generated by basically comparing these values with the threshold. Some other
system as in [3–5], environmental parameters or soil parameters were also concerned to
create some useful IoTs-based applications. Most of these systems have been devel-
oped by using a single standalone server [3] or an application running on a smartphone
[4] to store and visualize measured data. These solutions are only suitable for

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
Y. Chen and T. Q. Duong (Eds.): INISCOM 2017, LNICST 221, pp. 121–130, 2018.
https://doi.org/10.1007/978-3-319-74176-5_12



small-scale areas or some decorated houseplants while the scalability and availability
are not the primary requirements. However, with the high demands of the modern life,
to deploy a smart solution in a real situation, there are many challenges [6] we must
consider, such as the real-time monitoring, the scalability and the availability.

In this paper, we present a Smart Garden IoTs-based system. This system deals with
above challenges by using a load-balance network architecture on the Open Stack
cloud as well as applying the fuzzy logic controller to analyze measured data. Our
system not only helpful for the gardeners on keeping their plants growing well, but also
suitable to deal with high demand for real-time monitoring.

The structure of this paper is organized as follows. Section 1 introduces the
research topic and break down current challenges on IoTs-based in smart agriculture
domain as well as our paper’s contribution. Section 2 clarifies our system implemen-
tation. This Section includes fours sub-Sections, and each sub-Section presents a part of
our core system modules. Section 3 is the results of our system working in a practical
situation. Section 4 shows the related work in the current IoTs-based application for
smart agriculture as well as wireless sensor devices and wireless sensor network
architecture. Finally, Sect. 5 ends this paper with the conclusions and future work.

2 Implementation

In this Section, we clearly explain our system architecture by stating every part of the
model. Figure 1 shows the overview of our system, there are three important modules:
wireless sensor nodes (IoTs end devices), servers system, and web interface.

Fig. 1. Overview of IoTs application system architecture over UiT cloud servers

122 D. Huynh-Van et al.



2.1 Programming Wireless Sensor Devices

In our system, we used Telosb Mote which was developed by UC Berkeley. It is an
open source platform includes all the essentials for lab studies such as USB pro-
gramming capability, an IEEE 802.15.4 radio with integrated onboard antenna, TI
Micro Controller MSP430 with 10 kB. It also has optional sensor suit include: tem-
perature, light and humidity sensor. The Telosb platform run TinyOS 1.1.10 or higher
as well as Contiki – which are current most popular open source operating system for
wireless sensor devices. In our implementation, we used TinyOS 2.1.2.

For the purpose of this study, we write a program in nesC – a programming
language for creating TinyOS applications [7]. This program is loaded into sensor
nodes to collect environment data as temperature, light, and humidity then sends these
data to root node. SensorCollection program has three important files: module file
(SensorCollecionC.nc), configuration file (SensorCollectionAppC.nc) and Makefile.
The module file lists all interfaces that we will use in our application and define the
program implementation. The configuration file is responsible for assembling other
components together, connecting interfaces used by components to interfaces provided
by others. The Makefile is used to compile the application.

In the SensorCollection application, we used Collection Tree Protocol (CTP) pro-
vided by ColectionC component in TinyOS as a collection routing protocol for data
transmission. CTP is a distance vector protocol designed for sensors network and used
in research, teaching and commercial products. CTP is a tree-based collection protocol.
Some number of nodes in network work as a tree root. Other nodes create a set of
routing tree to these roots. CTP is address-free so that it does not send a packet to a
specific root; instead, it chooses a root by choosing next hop – called its parent node.
CTP uses a value called expected transmission (ETX) as its routing gradient (similarly
to metric value in other routing protocol). Root’s ETX is 0 and other node’s ETX are
the ETX of its parents plus the ETX of its link to its parents. When choosing a route for
transmitting data, CTP chooses the path which has lowest ETX value. An imple-
mentation of CTP is stored in tos/lib/net/ctp directory of TinyOS.

2.2 Building Server System

Our server system is developed based on OpenStack Cloud of the University of
Information Technology. The model systems include two web servers, two database
servers, two load balancers. All of them run Centos version 6.6. The full topology
architecture is shown in Fig. 2.

By using double-quantity servers, our system guarantees if one of web server dies
then all request of users will automatically redirect to another that enhance the scala-
bility and availability of the deployed system. Web server: On the web server Apache
is installed (Apache is as well-known open source web server). After completing
installation Apache, we continue installing PHP and PHP’s module as a server site
language to develop our website. To make the content on the directory/var/www of two
web servers automatically synchronized, we use unison solution. Unison is a file
synchronization tool, which synchronizes manner Master-Slave. For example, when
files on server 1 modified, it also happened in server 2. Database server: About the

Toward a Real-Time Development and Deployment of IoTs Application 123



database, we use MySQL as an open-source relational database management system.
Also for the simple management of tracking activities, we use phpMyAdmin - The
open source software written in Php is used for administering the Mysql server through
a web browser. Because we use two databases to ensure real-time store collected data
from sensor nodes, we must configure MySQL Replication to make one of them
become the master database, and other become slave database. Load balancer: The
load balancer is a transfer and control information system, which ensure secure web
server and database server. We use Keep alive to make a Virtual IP, after that, we
install HAproxy - a well-known open source software for TCP/HTTP load balancer, it
helps handle the incoming packets to different servers to help our server system not be
overloaded.

2.3 Developing Web Application

After we set up our server system, we build a web application to analyze and visualize
collected sensors data. This application is designed for two different using objects:
administrators and normal users. The administrators are the garden owner, and normal
users are gardeners who work in the garden and use this system for looking after their
plants easily and more efficiently. We have created a database that includes four
primary tables named client, project, node, and tree for storing corresponding data.
Client: this table stores user information like user id, username, password, user role,
and some contact information (phone number, address…) Project: storing information
related to the project that will be assigned to a particular user defined in the client table.
Node: this table stores wireless sensor node information, including node id, project id,
tree id, time update new data and sensors data (temperature, light, humidity). Tree:
designed for storing information of the plants in our garden. These data will be used as
standard data in fuzzy logic controller; we will clearly explain in next section. After we

Fig. 2. The server system architecture

124 D. Huynh-Van et al.



complete the database, we implement our visualization system by creating and website
for two usage purpose as we said above: administrators and normal users. The
administrators have full privileges to manage their gardens. They can visualize the
garden overview status as well as control all devices, gardeners and their post on the
website. While normal users – the gardeners have limited features, the only can view
the garden that administrator assigned them. This user also can manage the sensors
nodes used for their areas and read the posts created by administrators to get useful
information related to their plants.

2.4 Applying Fuzzy Logic Controller for Data Processing

One of the most important part in our web-based application is data processing
mechanism. In order to provide helpful information to gardeners, the system must
analyze collected raw sensors data before it displays alerts or reports on web interface.
Figure 3 shows the data flow processing:

As we show in this figure, raw data from sensor nodes are sent to server system for
storing and then analyzed by the reasoning engine to create helpful information dis-
played on website. In Receipt and Analysis block, our system handles these data in
different controller engine depend on their types. In particular, temperature data will be
considered in temperature fuzzy logic controller as we show below.

Temperature fuzzy logic controller: To analyze temperature collected data value, we
propose a simple fuzzy logic model as explained below (Fig. 4):

Fig. 3. Collected data processing flow.

Fig. 4. Temperature fuzzy logic controller model

Toward a Real-Time Development and Deployment of IoTs Application 125



Input: Tnode – Tsetpoint is the difference between the collected data from sensor node
the standard value set before (the best suitable temperature recommended for the
development of specific plant which we are taking care of). In this model, we defined
five input level named: NB (negative big), NM (negative medium), Z (Zero), PM
(positive medium) and PB (positive big). Output: Action is the necessary activities that
gardener should follow to keep their plants growing well. To create the make sense
output, we called five output value as HeatHi (gardener should doing something to
increase temperature with a “high” level), similarly other values is HeatLo (heating
with lower level), Nothing (doing nothing), VenLo (ventilating or slowing down
temperature with low level) and the last in VenHi (we should slow down temperature
steadily).

• Membership functions: The membership function associated with the input and
output control variables are shown in the following figures (Figs. 5 and 6):

• Inference rules: The inference rules is shown on Table 1 based on Mandani rules
composition: IF (Tnode – Tsetpoint) is (NB, NM, Z, PM, PB) THEN Action is
(HeatHi, HeatLo, Nothing, VenLo, VenHi).

The Humidity and Light Controller are also similar with the Temperature
Controler.

Fig. 5. The membership function of the input variables (Tnode – Tsetpoint)

Fig. 6. The membership function for output control variables - Action

126 D. Huynh-Van et al.



3 Result and Evaluation

Using Mathlab to simulate those fuzzy reasoning model, we get result as shown in
following figures (Fig. 7):

This figure demonstrates the temperature fuzzy controller with a specific input
value and the corresponding output action values by applying the interference rules that
we defined in above section. As the figure shows, when the collected temperature value
is smaller than the set point (–2 units) we have the output which towards to the second
partition (should reduce the garden temperature slightly).

By using a PHP-based fuzzy logic library, we have embedded this reasoning engine
to our web-based system. We also present the signal level from the action output as
human-readable alerts so that the gardeners can easily know what they should do next
for their plants growing well. Some sample alerts from our system is shown in Fig. 8.

As the figure shows, we define three levels for alert displaying, they are red, yellow
and green. The green color means collected data is in a safe zone, which is the proper
condition for plants growing. The yellow color informs received data is slightly higher
than our expected value while the red color is dangerous, we must focus on this area
because of the extremely difference between values from the sensor node and our
standard values (Fig. 8).

Table 1. The inference rules of temperature fuzzy logic controller

Rule IF Tnode – Tsetpoint THEN Action

1 IF Negative big (NB) THEN Heating (High)
2 IF Negative medium (NM) THEN Heating (Low)
3 IF Zero (Z) THEN Nothing
4 IF Positive medium (PM) THEN Ventilation (Low)
5 IF Positive big (PB) THEN Ventilation (High)

Fig. 7. An example of temperature fuzzy rule implementation.

Toward a Real-Time Development and Deployment of IoTs Application 127



To verify if our reasoning model is working well, we have run the fuzzy logic
controller with some sample input value on Matlab as well as on our web application.
Table 2 shows the result of our experiment with the temperature controller:

As the table shows, the output value from simulation on Matlab is similar with our
fuzzy controller implemented on the web-app.

4 Related Work

IoT-based application. In the environmental monitoring field, applied for smart
agriculture, there are many systems based on Internet of Things [2, 4]. In [3], a private
cloud was developed for the use in precision agriculture and ecological monitoring.

Fig. 8. A screen shot of our web-app visualization when operating in a practical experience.
(Color figure online)

Table 2. The experiment result from the temperature controller with some different input value

Input
values

MatLab
output

Web-app
output

Web’s notification

−8 8.56 8.33 Red: Temperature lower than recommended
7°C

−4 27.5 27.65 Yellow: Should increase 3°C
1 47.5 47.61 Green: Temperature at allowed level
4 67.5 67.65 Yellow: Should decrease 3°C
8 89 89.6 Red: Temperature higher than

recommended 7°C

128 D. Huynh-Van et al.



In that system, the authors used many open source tools: Linux, LAMP stack, PHP
programming language and Laravel framework as well as lots of sensor nodes based on
Arduino, Raspberry Pi and Libelium Plug and Sense. The system has just developed
and tested using a single-core stand-alone server so that not guarantee for availability of
the deployed system. Another real monitoring system based on IoT [5], which used
some wireless sensor devices as Raspberri Pi, soil moisture sensor, temperature and
water level sensor as well as AWS IoT technology for implementing an automatically
take care of houseplants. In generally, the IoT-based system for smart agriculture is a
new research topic and still attracting many researchers and investors to develop more
intelligent systems for solving the practical problems and enhance our life quality.
These systems must deal with some challenges as scalability, availability as well as
security. In that trends, cloud computing is an emerging technology necessary for
considering and applying on future IoT-based systems [6]. Wireless sensor node.
Depend on the using purposes, there are many types of wireless sensor nodes. Each
node consists of many optimized modules for saving energy, low-power transceiver by
using modern wireless standard as Zigbee, Bluetooth, 6LowPan and sensor array for
monitoring environmental parameters. The sensor array includes pH sensor, tempera-
ture sensor, humidity sensor, electromagnetic wave detector, photo-detector, gas sensor
and other sensor for some factors from the air as CO2, SO2… Telosb, Micaz, Mica2,
Arduino, RassberryPi are some of the most popular integrated wireless sensors node,
which used widely in research and development IoT application. Network topology.
A wireless sensor network is a collection of many nodes organized for working in a
cooperative network. This network is well designed for lower-power consumption and
resource friendly operation. To archive that challenges, many kinds of traditional
network topologies were optimized for wireless sensor network as Bus, Tree, Start,
Mesh, Ring, Cellular, and Grid [8]. Each of these types has different characteristics and
compatible for using in a particular situation. For example, bus topology is easy to
install but network congestion and single path transmission. In the start topology, there
is a central node works as a sink node, other nodes in the network communicate to each
other by using the route through the central node. If the central node has a problem, it
will affect for all the network. This topology is compatible for application work as
server – client model. In our system, we use tree topology to implement our sensor
network.

5 Conclusion and Future Work

Our system is a simple model which implements an IoTs-based application for Smart
Garden. By using wireless sensor network under the Collection Tree Protocol, the
wireless devices collect basic environmental parameters (temperature, light, humidity)
for analyzing through the fuzzy logic controller to give helpful information to the
gardeners. Our system also deals with real-time monitoring, scalability and availability
by implementing on Open Stack cloud computing. In the future, to improve our system
more practically and efficiently we should continue to develop the reasoning engine to
be more intelligent as well as upgrade the website more useful by adding some con-
venient features. We also should research and learn more about the automatic

Toward a Real-Time Development and Deployment of IoTs Application 129



technology system so that we can combine our system with a modern actuator system
in order to generate a full stack “Smart Garden” architecture as a smart solution for the
modern agriculture.

Acknowledgement. This research is funded by Vietnam National University HoChiMinh City
(VNU-HCM) under grant number C2016-26-01/HĐ-KHCN.

References

1. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a vision,
architectural elements, and future directions. Future Gener. Comput. Syst. 29(7), 1645–1660
(2013)

2. Yang, J., Guo, B., Wang, Z.: A study on the rabbit farm environmental monitoring system
based on Internet of Things. Adv. Sci. Technol. Lett. 121, 178–182 (2016)

3. Bajceta, M., Sekulic, P., Krstajic, B., Djukanovic, S., Popovic, T.: A private IoT cloud
platform for precision agriculture and ecological monitoring. In: International Conference on
Electrical, Electronic and Computing Engineering (2016)

4. Na, A., Isaac, W., Varshney, S., Khan, E.: An IoT based system for remote monitoring of soil
characteristics In: 2016 International Conference on Information Technology (InCITe) - The
Next Generation IT Summit on the Theme - Internet of Things: Connect Your Worlds,
pp. 316–320 (2016)

5. Kuruva, H., Sravani, B.: Remote plant watering and monitoring system based on IOT. Int.
J. Technol. Res. Eng. 4, 668–671 (2016)

6. Mehta, A., Patel, S.: IOT based smart agriculture research opportunities and challenges. Int.
J. Technol. Res. Eng. 4, 541–543 (2016)

7. Gay, D., Levis, P., Behren, R.V., Welsh, M., Brewer, E., Culler, D.: The nesC language: a
holistic approach to networked embedded systems. In: Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design and Implementation, vol. 38, pp. 1–11
(2003)

8. Sharma, D., Verma, S., Sharma, K.: Network topologies in wireless sensor networks: a
review. IJECT 4, 93–97 (2013)

130 D. Huynh-Van et al.


	Toward a Real-Time Development and Deployment of IoTs Application for Smart Garden on OpenStack Cloud
	Abstract
	1 Introduction
	2 Implementation
	2.1 Programming Wireless Sensor Devices
	2.2 Building Server System
	2.3 Developing Web Application
	2.4 Applying Fuzzy Logic Controller for Data Processing

	3 Result and Evaluation
	4 Related Work
	5 Conclusion and Future Work
	Acknowledgement
	References


