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Abstract. The ElectroEncephaloGram (EEG) signal plays an important role to
identifying the disorder of epilepsy. Epilepsy is a neurological disorder which is
an unexpected electrical disturbance of the brain. Due to which nerve cell
activity in the brain becomes disrupted, causes people to have a “Seizure”. Now
a day researchers are working and focusing on an automatic analysis of EEG
signal to classify the Epilepsy. The EEG signal recording system generate very
lengthy data. So, classification of epilepsy seizure requires a time-consuming
process. This paper proposes SVM (Support Vector Machine) based automatic
epilepsy seizure classification system that uses ApEn (Approximation Entropy).
ApEn is reducing the patient data size without any loss of patient data so; we can
easily classify the epilepsy seizure. ApEn is statistical parameters that measure
the current amplitude value of an EEG signal based on its previous amplitude
value. In this paper, we measure sensitivity, specificity, and accuracy using
SVM classifier. The overall values as high as 100% can be achieved using the
proposed system to differentiate epileptic state (Seizure class) out of normal state
(Non-seizure Class) using time domain method.
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1 Introduction

Electrical activity is occurring in different brain regions which are determined by the
EEG signal and we can also determine the relative positions and strengths of it. The
abnormal electrical activities fetched by using EEG are called epilepsy seizures.
Approximately 50 million people have epilepsy seizure worldwide [1]. Possible causes
of epilepsy include brain injury, metabolic disturbances, alcohol or drug abuse, brain
tumors, and genetic disorders.

In the small time period, epileptic seizure can’t be predicted in most of the cases.
For classification purpose, continuous recording of the EEG is required. Some-
times EEG recording takes very large time duration. It may be up to one week or two
weeks. As the traditional methods are monotonous and slow. In past few years,
automated epilepsy seizure classification systems have been developed [2]. The pro-
posed work is an automatic epileptic EEG classification system using SVM and feature
extraction and reduction by using Approximate Entropy (ApEn).

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
Z. Patel and S. Gupta (Eds.): ICFITT 2017, LNICST 220, pp. 75-85, 2018.
https://doi.org/10.1007/978-3-319-73712-6_8



76 H. B. Gabani and C. N. Paunwala

As shown in below figure we give the EEG signal at the input side. ApEn technique
[3] is used to extract the features of the signal. Extracted features are then apply to the
classifier to classify seizures or non-seizures data (Fig. 1).

Generalized
Seizure(S)
Feature
EEG data »| Feature Extraction »| Classification
(Bonn Dataset) (ApEn) (SVM)
SR S e
1 i}"‘l i m
ir M Mkl
A —>| Noml®
L ! .

Fig. 1. Block diagram

Programmed examination and finding of epilepsy in view of EEG recordings is
begun in the mid-1970s. Today, PC-based examination addresses two problems:
Epilepsy seizure classification and EEG analysis. Many feature extraction techniques
have been used for the classification of Epilepsy seizure. SVM (Support Vector
Machine) based classification system for epilepsy seizure have been proposed by many
researcher. The research based on nonlinear parameters has been found clinically
fruitful for classification of Epilepsy seizure.

The Lyapunov exponent [4—6] provides significant details about changes in EEG
activity in turn facilitating early detection of epilepsy. The correlation dimension [7] is
useful to measure correlation which quantifies complex neural activity of human brain.
During epileptic seizure, the value of ApEn has been found to exhibit strong rela-
tionship with synchronous discharge of large groups of neurons. The features obtained
from complexity analysis and spectral analysis of EEG signals has been effectively
used for diagnosis of epilepsy [8]. Recently, the ApEn (Approximate Entropy) [3]
based methods have been developed for analyzing linear signals for classification of
epileptic seizures in epilepsy seizure [9, 13]. The MEAN frequency parameter of IMFs
has been proposed to discriminate well between seizure and seizure-free EEG signals.
For classification between healthy and epileptic EEG signals, weighted frequency has
been found to be some parameter [10]. Analysis of normal and epileptic seizure EEG
signals by using area measured from the trace of analytical signal representation of
Intrinsic Mode Function (IMF) has been proposed in [11]. The area parameter and
mean frequency of IMFs computed using Fourier—Bessel expansion used for epileptic
seizure classification in EEG signals [12]. Also, IMFs of EEG signals have been used
for recognition of epileptic seizure [13].
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2 Proposed Algorithm

2.1 ApEn (Approximate Entropy) Based Feature Extraction

An ApEn is a technique used to quantify the amount of regularity and the unpre-
dictability of fluctuations over time-series data [3].

(1) Let EEG signal with N data points X = [x(1),x(2),x(3),...,x(N)].

(2) Let x(i) be a subsequence of X such that x(i) = [x(i), x(@ + 1), x(i + 2),..., x
@+m—1] for 1 < i < N— m, where m represents the number of samples
used for the prediction.

(3) To reduce the noise, filter with level r is represented as, » = k * SD for k = 0, 0.1,
0.2,0.3,...,09
Where SD is the standard deviation of X.

(4) Let {x(j)/ represent a set of subsequence’s obtained from x(j) by varying j from 1
to N. Each sequence x(j) in the set of {x(j)} is compared with x(i) and, in this
process, two parameters, namely, C?(r) and C"*!(r) are defined as follows:

Sk
C'(r)===—" "1 1
P =2 (1)
Where,
. { 1, if e(i) — x()| for 1 <j<N —m
~ 10, otherwise (2)
N—m
Cl-n+l(r) _ Z‘:l kj
! N-—m

(5) Finally, we get Approximation Entropy,

N—m m N—m m 1
ApEn(m,r,N)= Zi:lle(;" (r) _ 2 ]\]/niciﬂ () (3)

Approximation entropy value extracted from the different size of data frames is
shown in Table 1. Now as from the algorithm of ApEn, m is sample value varies from
1 to 3 and for particular m, we are using 10 values of entropy as mentioned in Table 2.
Table 3 shows the reduction of the 4,09,700 sample to small sample size.

Table 1. Frame size

Size of frame (N) | No. of frame per each time-series

173 4097/173 =23
256 4097/256 = 16
512 4097/512 = 8
1024 4097/1024 = 4

2048 4097/2048 = 2
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Table 2. Number of entropy value per each time-series

Size of frame No. of frame per No. of entropy values
N) each time-series per each time-series
173 23 30 * 23 =690
256 16 30 * 16 = 480
512 8 30 * 8 =240
1024 4 30 * 4 =120
2048 2 30 *2 =60

Table 3. Reduction of sample size

Size of frame (N) | Final data after apply Apen (4097 * 100 = 4,09,700)
173 690 * 100 = 69000
256 480 * 100 = 48000
512 240 * 100 = 24000

1024 120 * 100 = 12000

2048 60 * 100 = 6000

2.2 Support Vector Machine (SVM)

We map input patterns into a higher dimensional feature space through using SVM
(Support Vector Machine). In this high dimensional feature space, linear decision
surface constructed. So, SVM is a linear classifier in the parameter space [15].

Let we take m dimensional training data set xi = (1,..., M) and their class labels be
vi, where yi = 1 and yi = —1 for positive and negative classes respectively. In particular
input space, linear separable data then the following decision function can be deter-
mined as,

D(x) =w'gx) + b (4)

Maps x into the l-dimensional space, we use g(x) is a mapping function. B is a
scaler and w is the vector in 1-dimensional space. If we separate data linearly, the
decision function satisfies the following condition given below:

Yi =(w'g(xi)+b) > =1 5)
Where,i=1,... .M

For an infinite number of decision functions I is linearly separable in the feature
space then it satisfy Eq. (5). So, we require that the hyper-plane that have the largest
margin between positive and negative class. The D(x)/llwll is margin that contain
minimum distance from the separating hyper-plane to the input data.
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Assume that the margin is p, the following condition is to be satisfied

YiD(xi) P
wi — (6)
Where,i=1,....M

The product of p and ||w|| is fixed
plwl=1 (7)

In order to obtain the optimal separating hyper-plane with contain maximum
margin, w with the minimum ||w|| that satisfying Eq. (6) found. From Eq. (7), this
equations are solving this optimization problem. Minimizing Yi,

Yi = W'g(xi)+b) > =1 (8)

We introduce slack variable £, When training data are not linearly separable into
Eq. (5) as follows subject to the constraints:

Yi = W'g(xi)+b) > =1-Ci ©)
ti>0fori=1,... .M
The optimal separating hyper-plane is determined so that the maximization of the
margin and the minimization of the training error achieved. Minimizing

1,
Eww+5izz;§’; (10)

Subject to the constraints:

Yi = (W'g(xi) +b) > =1-& "
ti>0fori=1,..M (11)

Where C is a parameter that determines the trade-off between the maximum margin
and the minimum classification error and p is 1 or 2. When p = 1, the SVM is called L1
soft margin SVM (L1-SVM), and when p = 2, L2 soft margin SVM (L2-SVM). In the
conventional SVM, optimal separating hyper-plane obtained by solving the above
quadratic programming problem. In this empirically and optimal results achieved using
Radial Basis Function (RBF).

In first experiment, all 100 time-series of N and S is taken for training and testing.
For frame size 173, entropy values are 690 for each time-series, so if we take 100
time-series, entropy values would be 69000 for one class and it is double (138000) by
considering both seizure and non-seizure class. These procedures followed for all four
features. Entropy values of both classes S and N for training and testing dataset for all
frames is shown in Table 4 (Fig. 2).
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Table 4. Number of entropy value for testing

Sr. Time-series of N | Frame No. of entropy values No. of entropy values
no. and S size for training for testing

1. 200 173 1,38,000 1,38,000

2. 200 256 96,000 96,000

3. 200 512 48,000 48,000

4. 200 1024 24,000 24,000

5. 200 2048 12,000 12,000
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Fig. 2. ApEn for N and S file set for (a) N =2048, m = 3, r = 0.3 with SD, (b) N = 2048,
m =1, r = 0.0 with mean

For frame size N = 2048 and m = 3 and r = 0.3, gets optimum accuracy for ApEn.
From that, we get highest accuracy 99.00% of the feature ApEn with SD for experi-
ment and frame size N = 2048 and m = 1 and r = 0.3, gets optimum accuracy for
ApEn. From that, we get highest accuracy 99.00% of the feature ApEn with Mean for
experiment.

For training purpose, all 50-time-series data for N and S taken and 100 time-series
data, taken for testing. Entropy values of both classes S and N for training and testing
dataset for all frames as shown in Table 5.

Table 5. Entropy value after 50% training

Sr Frame Time-series of N and S | Time-series of N and No. of entropy values
no. size for training S for testing for training

1. 173 100 200 69,000

2. 256 100 200 48,000

3. 512 100 200 24,000

4. 1024 100 200 12,000

5. 2048 100 200 6000
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Fig. 3. ApEn for N and S file set after 50% training and testing (a) N = 1024, m =1, r = 0.0
with SD, (b) N = 2048, m = 1, r = 0.0 with mean

The above Fig. 3 are for all optimum results of experiment feature dataset as shown
in above Table 5. The figure shows the SVM classification for the seizure and normal
class using radial basis kernel function. Where seizure is denoted by * and normal by +.
The line is describing linear classification of the dataset. The o describes wrongly
classify data points of opposite class.

2.3 Performance Parameters

2.3.1 Standard Deviation

Quantify the amount of variation or dispersion of a set of data values by using standard
deviation. The standard deviation of a random variable like,

(1) Statistical population,
(2) Data set, or probability distribution is the square root of its variance [15].

2.3.2 Mean
The Mean is also called as a arithmetic mean of a sample. It is usually denoted by x.

The x is the sum of the signals sampled values divided by the number of items in the
sample [15].



82 H. B. Gabani and C. N. Paunwala
2.3.3 Sensitivity

No. of true positive detected data points

Sensitivity = 12
enstvity total no. of positive data points (12)
Sensitivity considered for detection of seizure data [16].
2.3.4 Specificity
Specificity — No. of true negative detected data points (13)

total no. of negative data points
Specificity considered for detection of non-seizure data [16].

2.3.5 Accuracy

(TP) + (TN)

Accuracy = .
Y~ total no. of data points

(14)

TP = No. of true positive detected data points
TN = No. of true negative detected data points [16].

3 Experimentation Results

In our work, we have extracted the features from the EEG signal and classification done
using SVM classifier in to two class seizure-free and seizure patient data. ApEn values
is measure in form of m, r, and N. The values of m, r, and N are as follows:

(1) Number of Samples (m) = 1, 2, 3;

(2) Normalization Ratio (r) = 0%-90% of SD of the data sequence in increments of
10%;

(3) Frame Size (N) = 173, 256, 512, 1024 and 2048.

Approximation Entropy is extracted along with SD and mean. The randomness of
EEG signal were extracted in the features, based on different size of frame (N), number
of samples values (m) and normalized ratio (k). From the set of features, ApEn with SD
and mean, are used for classification using the SVM classifier.

We have used BONN dataset for EEG signals which is publicly available online
and described in Andrzejak et al. [17]. The EEG dataset contains both seizures and
non-seizures. The Bonn dataset consists five subsets (Z, O, N, F, and S) each con-
taining 100 single-channel EEG signals, each signal of 23.6 s in duration with the
sampling rate of 173.61 Hz.

EEG recordings of five healthy volunteers with eyes open (Z) and closed (O) have
been recorded on the surface, using standard electrode placement scheme. The signal F
and S are seizure free subset. These two are recorded in seizure-free intervals from five
patients in the epileptogenic zone (F-Seizure free) and from the hippocampal formation
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of the opposite hemisphere of the brain (N-seizure free). The set S is contained seizures
signal which gives an ictal activity by using with the same 128-channel amplifier
system with an average common reference all EEG signals are recorded. In the pro-
posed work classification of the N (Seizure free class) and S (Seizure class) is done by
using ApEn (Approximate Entropy) feature extraction and reduction and SVM as
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classifier. Figures 4 and 5 show N (Seizure free-patient) and S (Seizure-patient) EEG
signals, respectively. It is containing only seizure impulse. Here each dataset contain
100 time-series. Each signal contains 4097 samples (Fig. 6).

For all 100 EEG data sets, 50 data sets are used for training and the others are used
for testing using SVM classifier. SVM classifier is used to classify unknown data
properly. The highest accuracy is 100% for the feature set ApEn with SD for frame size
N = 1024, sample value m = 1 and normalization ratio » = 0.0. In the proposed method
accuracy achieved up to 100% for the feature set ApEn with SD. For training and
testing purpose we get different accuracy, sensitivity and specificity as shown in graph.

Table 6. Comparison of methodology for same dataset

Methodology Subset Classification
accuracy (%)
Permutation entropy (PE) and SVM classifier [14] Nand S |88.83
Empirical mode decomposition (EMD) [16] Nand S [95.33
Clustering and SVM classifier [18] Sand N |97.69
SODP and artificial neural network (ANN) classifier [15] Sand N |97.75
Empirical mode decomposition (EMD) and phase space Nand S |98.67
representation (PSR) [19]

As shown in Table 6 all the papers are worked on Bonn dataset and they achieved
maximum accuracy is 98.67%. In the proposed method accuracy achieved up to 100%
for the feature set ApEn with SD.

4 Conclusion

We have extracted the features from the EEG signal and classification done using SVM
classifier in to two class seizure and normal. Approximation entropy is extracted along
with SD and mean. The randomness of EEG signal were extracted in the features,
based on different size of frame (N), no. of samples values () and normalized ratio (r).
From the set of features ApEn with SD, ApEn with mean, were used for classification
using the SVM classifier. The highest classification accuracy is 100% for N and S class.
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