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Abstract. Peer-to-peer opportunistic communication between mobile
devices carried by humans without using any infrastructure is largely
unexploited. The encounter pattern of the devices depends on human
mobility pattern which is governed by human social behaviour. Indi-
viduals belong to multiple communities. These social ties significantly
affect humans’ movement pattern. Traditional mobility models, such as
Random Way Point (RWP) and Brownian Motion (BM), model device
mobility as random. However, researchers have shown that human mobil-
ity is rarely random and such models do not provide a reliable analysis of
network protocol performance. Various characteristics of human mobil-
ity are derived in the literature from mobility traces and social network
theory. None of the mobility models in the literature incorporate all of
them. In this paper, Proximity and Community Aware Heterogeneous
Human Mobility (P-CAHM) model is proposed incorporating all of these
characteristics.
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1 Introduction

In recent times, the growth of mobile devices (especially smartphones) is phe-
nomenal. These devices support Bluetooth and Wifi connectivity. As these
devices are carried by humans, their encounter patterns depend on human mobil-
ity patterns. Thus, knowledge of human movement behaviour and social struc-
ture can be exploited for efficient peer-to-peer communication [1,3] between these
devices. As a result, this network paradigm is called as Mobile Social Network
(MSN).

To analyze the performance of protocols which aim to exploit human move-
ment behaviour through simulation, it is essential to design realistic mobility
models which can mimic human mobility patterns as closely as possible. A num-
ber of experimental projects have been undertaken to collect encounter infor-
mation of devices carried by humans [4,12]. These traces can be used in the
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simulation to evaluate and analyze the performance of different protocols. While
this approach generates realistic mobility patterns, its usefulness is limited as the
performance of a protocol can be evaluated only for limited values of network
parameters for which traces are available. Nonetheless, from analysis of these
traces, various statistical properties of human mobility are derived [4,7,12,27].
Well-known and widely used mobility models such as Random Way Point (RWP)
[14], Brownian Motion (BM) [8] etc. do not exhibit these properties. Further,
movement of nodes is not independent. Nodes move as per the underlying over-
lapping community structure of humans who carry them. These mobility char-
acteristics have a significant impact on the performance of forwarding strategy.

Community Aware Heterogeneous Human Mobility (CAHM) model [21]
incorporates all these trace-based and social characteristics of human mobility.
But, CAHM does not incorporate one important property of human mobility,
i.e. locations that share many common users visiting them frequently tend to be
located close to each other. In this paper, CAHM is improved by incorporating
this property and this improved CAHM is called as Proximity and Community
Aware Heterogeneous Human Mobility (P-CAHM).

In the following Sect. 2, literature survey of existing mobility models for
Mobile Social Networks (MSN) is presented. The proposed Proximity and Com-
munity Aware Heterogeneous Human Mobility (P-CAHM) model is described
in Sect. 3. Simulation results are discussed in Sect. 4. Finally, Sect. 5 concludes
the paper.

2 Literature Survey

To study characteristics of human mobility, many experimental studies at various
universities (UCSD [18], Dartmouth [10], MIT [4], and University of Illinois [28])
and conferences (Infocom 2005 [12], Infocom 2006 [3], and SIGCOMM [24]) have
been undertaken. In these experiments, humans participating in the experiment
carry devices equipped with Wifi/Bluetooth and/or GPS sensor. These devices
log encounter, location, and time information for a period of time.

From the analysis of these traces, various statistical properties of human
mobility are derived which are as follows.

T.1 Aggregate inter-contact time follows power-law distribution with exponen-
tial cutoff [3,12].

T.2 Pause time follows truncated power-law distribution [27].
T.3 Humans visit nearby locations more frequently compared to far-away loca-

tions [7].
T.4 Humans have location preferences and they periodically re-appear at these

locations [7].
T.5 Speed at which humans move increases with distance to be traveled [27].

2.1 Real-Trace Based Models

Real-trace based models try to capture features of individual’s independent
movement observed from mobility traces. Working Day Mobility (WDM)
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model [5] and Time Variant Community (TVC) model [11] incorporate prop-
erties T.1 and T.4. Small World In Motion (SWIM) model [19] incorporates
all properties T.1 to T.5. Self-similar Least Action Walk (SLAW) model [17]
incorporates properties T.1, T.2, and T.3.

2.2 Social-Aware Models

Following are the main characteristics derived from the social network theory
which affect human mobility.

S.1 Humans form communities based on their social relationships [22].
S.2 Humans belong to multiple communities and so, communities overlap [23].
S.3 Different individuals have different local popularity within a community and

different global popularity in the social network [13].
S.4 Community size, the number of communities in which a node is a member

and overlap size approximately follow power-law distribution where over-
lap size is defined as the number of individuals which are common in two
communities [23].

S.5 Locations that share many common users visiting them frequently tend to
be located close to each other [15].

Community-based Mobility Model (CMM) [20], Home-cell CMM (HCMM)
[2], and N-body [31] models incorporate only S.1 of social network theory based
properties. CMM and HCMM also incorporate some of the properties derived
from mobility traces. But, these models do not incorporate properties S.2, S.3,
S.4, and S.5 which are very important properties and have a significant impact
on the performance of routing protocols. Social, sPatial, and Temporal mobility
framework (SPoT) [15] is flexible and controllable mobility framework. But, it
generates only contact traces and proposal in the paper for generating move-
ment traces is preliminary. Further, it takes a social graph as an input instead
of generating community structure synthetically. So, it lacks the flexibility of
generating a large number of different social graphs for simulation. A detailed
review of human mobility in opportunistic networks is available in [26].

Community Aware Heterogeneous Human Mobility (CAHM) model incor-
porates properties S.1 to S.4 derived from social network theory to generate
community structure synthetically. CAHM is able to generate any number of
overlapping community structures on its own based on input parameters. It
does not take real life social network as an input, as requiring real life social
network as an input restricts possible scenarios for which performance evalua-
tion can be done. Further, it also does not use Social Network Models (SNM)
such as Caveman model [29] to generate community structure, as these models
are quite simplistic and do not take into account all social network theory based
properties. It also incorporates all trace-based properties. However, it does not
incorporate property S.5. So, Proximity and Community Aware Heterogeneous
Human Mobility (P-CAHM) model is proposed in this paper to incorporate
property S.5. The summary of the comparison of different mobility models for
MSN is presented in Table 1.
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Table 1. Comparison of mobility models for MSN

Mobility model T.1 T.2 T.3 T.4 T.5 S.1 S.2 S.3 S.4 S.5

SLAW [17] � � �
WDM [5] � � � �
TVC [11] � � � �
SWIM [19] � � � � �
N-body [31] � �
CMM [20] � � �
HCMM [2] � � � �
HHW [30] � � � � � �
CAHM [21] � � � � � � � � �
P-CAHM (Proposed) � � � � � � � � � �

As P-CAHM is based on CAHM, an overview of CAHM model is given in
the following sub-section.

2.3 Overview of Community Aware Heterogeneous Human
Mobility (CAHM) Model

In overlapping community structure, each individual n in the social network may
belong to number of communities denoted as membership number Λn. Further,
any two communities x and y may share Sov

x,y individuals, defined as overlap
size between two communities. Let us denote size of community x as Scom

x and
probability distribution functions of membership number, overlap size and com-
munity size as P(Λ), P(Sov) and P(S

′com) respectively. Here, S
′com = Scom − k

to keep minimum community size equal to k where k is clique size. A k-clique
is complete sub-graph of size k and k-clique community is union of all k-cliques
that can be reached from one another through series of adjacent k-cliques where
two k-cliques are adjacent if they share k − 1 nodes [23]. Based on the analysis
of a variety of social networks, Palla et al. [23] conclude that P(Λ), P(Sov) and
P(S

′com) approximately follow power-law distribution P(x) ∼ x−τ , with expo-
nents τ = ΥΛ, τ = ΥOsize and τ = ΥCsize, respectively. Further, they report that
values of ΥΛ and ΥOsize are not less than 2, and the value of ΥCsize is between 1
and 1.6. These statistical properties are used to synthetically construct k-clique
overlapping community structure.

P-CAHM model is composed of four components: (1) Establishing overlap-
ping community structure, (2) Generating heterogeneous local degree, (3) Map-
ping communities into geographical zones, and (4) Driving individual motion.
These components are explained in following four sub-sections.

Establishing k-clique Overlapping Community Structure. A day (or a
week or any time duration) is divided into periods, and overlapping community
structures are different in each of these periods but is same in the same period
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of different days. Let us define nodes with membership number larger than 2,
equal to 2 and equal to 1 as M-3 nodes, M-2 nodes, and M-1 nodes respectively.
Community structure for each period is constructed as follows:

1. Generate nodes’ membership numbers such that they follow P(Λ) with expo-
nent ΥΛ. Then, establish initial empty communities whose sizes Scom follow
P(S

′com) with exponent ΥCsize such that
∑

i Λi =
∑

j Sj
com.

2. Use all M-3 nodes to establish initial overlaps between pairs of communities.
3. Modify initial overlaps by allocating all M-2 nodes to communities such that

overlaps’ sizes follow P(Sov) with exponent ΥOsize.
4. Allocate all M-1 nodes to unsaturated communities.

Generating Heterogeneous Local Degree. Local degree of a node within a
community is defined as the number of neighbours of the node in the community.
A node’s local popularity depends on its local degree. Let Localni denote local
degree of node n in its community i where Localni ≥ k−1 as per the definition of
k-clique community. These values are generated such that they follow a power-
law distribution with exponent ΥLocal.

Mapping Communities into Geographical Zones. To simulate n mobile
nodes in a two-dimensional square plane, the model divides the plane into a
grid of non-overlapping square cells. For each period, a community x with size
Sx is associated with a zone composed of Cx adjacent cells. The location of a
zone within the simulation plane is chosen randomly such that zones of different
communities do not overlap. Each node n is randomly associated with Localni
cells within the zone of its community i. Let μx be the average local degree and
Nx be the number of nodes in community x. Let m be the community density
index denoting denseness of a community. Then,

Cx = m × μx × Nx (1)

Driving Individual Motion. Initially, each node randomly selects one of its
associated cells and then it is located at a random position inside that cell. To
move, a node chooses an associated cell as next goal based on the distance it will
have to travel with truncated power-law distribution P(D) with exponent ΥD

between the minimum distance and the maximum distance a node can travel.
As found in [27], speed increases with the increase in flight length because

individuals use transportation to travel long distances instead of walking. They
have also derived following relation between flight time (t) and flight length (l)
from different mobility traces.

t = p × l1−η, 0 ≤ η ≤ 1 (2)

From mobility traces, Rhee et al. [27] have proposed p = 30.55 and η = 0.89
when l < 500 m, and p = 0.76 and η = 0.28 when l ≥ 500 m. CAHM uses this
model to calculate speed at which a node should travel to next goal.
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The overlapping community structure, corresponding associated zones and
cells change at the start of the new period. When the period changes, after
reaching its current goal, the node selects next goal inside one of its newly
associated cells of the new period.

3 Proximity and Community Aware Heterogeneous
Human Mobility (P-CAHM) Model

In CAHM, the location of a zone associated with a community is selected ran-
domly. But, locations of communities are not random. As shown in [15], locations
that share many common users visiting them frequently tend to be located close
to each other. So, CAHM is modified such that distances between communities
are proportional to the number of common members of communities.

To decide the location of zones associated with communities, consider the
network of communities as a graph where communities are nodes and two com-
munities are connected by an edge if they have some common member nodes.
Initially, zones are placed randomly in the simulation plane such that two zones
do not overlap. Our goal is to place these zones such that distance between
them is proportional to the number of common member nodes in corresponding
communities.

Consider this as the n-body problem of physics. Two zones attract and repel
each other with the force proportional to the number of common member nodes
of the corresponding two communities. The pseudo-code is presented in the
Algorithm 1. The algorithm is based on the one presented in [6] to draw a graph
such that all vertices are placed at equal distance from each other. We need to
place communities at distances which are proportional to the number of common
member nodes of communities and instead of a point on the plane, a community
requires an area on the plane.

In the algorithm, there are four steps in each iteration: calculate the effect
of attractive forces on each community, then calculate the effect of repulsive
forces, limit the total displacement by the ‘temperature’, and translate new
positions of communities such that they are within simulation area. In using the
‘temperature’, the idea is to limit maximum displacement of a community to
some maximum value, and this maximum value decreases over time. So, as the
layout becomes better, the amount of adjustment becomes finer.

4 Simulation Results

P-CAHM model is implemented in ONE simulator [16]. It is a de facto simula-
tor for Delay Tolerant Network (DTN) research. P-CAHM is simulated with the
following scenario. There are 500 nodes in a simulation plane of 40 km× 40 km,
divided into a grid of cells with size 252 m× 252 m each. The transmission range
of each node is 40 m. The speed follows Eq. 2 and pause time is generated using
power-law distribution with exponent 2 between 0 and 1000 s. 4-clique com-
munities are generated, i.e. k = 4. Power-law exponents are set with ΥΛ = 3,
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Algorithm 1. Algorithm to place communities based on number of com-
mon member nodes

simulation area = maxX ∗ maxY
G = (V, E) {Initial positions of communities V are random}
{k is the desired distance between mid-points of two communities and x is the current
distance}
function fa(k, x) = begin return x2/k end
function fr(k, x) = begin return k2/x end
for i = 1 to iterations do

{Calculate repulsive forces}
for v in V do

{Each vertex has two vectors: .pos and .disp where .pos represents mid-point of a
community}
v.disp = 0
for u in V do

if u �= v then
{Δ is the short hand for the difference vector between the positions
of the two vertices}
Δ = v.pos − u.pos
{rv is the radius of community v, tieStrength(u, v) represents number of
common
member nodes of u and v scaled between 0 and 1}
k = rv + ru + (1 − tieStrength(u, v))/(1 − avgT ieStrength) ∗√

(maxX ∗ maxY − totalCommunityArea)/|V |
v.disp = v.disp + (Δ/|Δ|) ∗ fr(k, |Δ|)

end if
end for

end for
{Calculate attractive forces}
for e in E do

{Each edge is an ordered pair of vertices .v and .u}
Δ = e.v.pos − e.u.pos
k = rv + ru + (1 − tieStrength(u, v))/(1 − avgT ieStrength) ∗√

(maxX ∗ maxY − totalCommunityArea)/|V |
e.v.disp = e.v.disp − (Δ/|Δ)|) ∗ fa(k, |Δ|)
e.u.disp = e.u.disp + (Δ/|Δ)|) ∗ fa(k, |Δ|)

end for
{Limit the maximum displacement to the temperature t}
for v in V do

v.pos = v.pos + (v.disp/|v.disp|) ∗ min(v.disp, t)
end for
for v in V do

{Prevent from being displaced outside frame}
v.pos.x = translate(v.pos.x, min(.pos.x), max(.pos.x), rv , maxX − rv)
v.pos.y = translate(v.pos.y, min(.pos.y), max(.pos.y), rv , maxY − rv)

end for
{Reduce the temperature t as layout approaches better configuration}
t = cool(t)

end for
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ΥOsize = 2, ΥCsize = 1.2, ΥLocal = 2.4, and flight length exponent ΥD = 2. All
these values are in the range recommended for these exponents in the literature
from mobility traces [22,23,27]. With a random seed, the model generates 14
communities with sizes 8, 121, 70, 6, 227, 7, 51, 91, 22, 3, 157, 3, 3, and 12.
Because of space constraint, figures are not included. We run the simulation for
72,000 s.

To verify that in P-CAHM also, similar to CAHM, aggregate inter-contact
time distribution is power-law with exponential cutoff, the simulation is done for
two days. Simulation result shows that Complementary Cumulative Distribution
Function (CCDF) of aggregate inter-contact times of P-CAHM follows power-law
distribution with exponential cutoff which matches with the CCDF of aggregate
inter-contact times of mobility traces [21].

To check the efficacy of our algorithm for the placement of communities pro-
portional to the distances between them, Spearman’s rank correlation coefficient
(ρ) [25] is used. First of all, for initial random placement of communities, dis-
tances between communities are calculated and ordered list of initial distances
is generated. ρ for this ordered list and the ordered list of tie strengths between
communities comes out to be 0.19. Here, tie strengths between communities are
number of common member nodes of communities scaled between 0 and 1. It
shows that initially there is very weak correlation between distances and tie
strengths. After the completion of the algorithm, the ρ comes out to be 0.52
which denotes a strong correlation between distances and tie strengths.

To check the effect of proximity property on the network performance in the
given network scenario, 1/12 messages per second are generated in the network
with the message size of 8 kB. In the steady state, with P-CAHM model, average
message delivery delay and delivery ratio are 18000 s and 55% respectively. With
CAHM model, they are 19029 s and 51%. In P-CAHM, as common member
nodes need to travel less distances between communities, delivery delays of the
messages they carry get reduced as compared to CAHM. As a consequence, less
number of messages time out. So, the delivery ratio also improves.

5 Conclusion

To analyze the performance of routing protocols aiming to exploit human
movement behaviour through simulation, it is essential to design realistic
mobility models which can mimic human mobility patterns as closely as pos-
sible. Various characteristics of human mobility are derived from mobility
traces and from social network theory in the literature. No existing mobility
model, except CAHM, generates community structure synthetically incorporat-
ing all these characteristics and without using Social Network Models such as
Caveman model. In this paper, Proximity and Community Aware Heterogeneous
Human Mobility (P-CAHM) model is proposed with the following modification
in CAHM: Instead of placing communities at random locations in the simula-
tion plane, they are placed such that distances between them are proportional
to the number of common member nodes of the communities. Simulation result
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demonstrates that P-CAHM successfully establishes a strong correlation between
distances among communities and number of common member nodes of com-
munities. Also, CCDF of inter-contact times in P-CAHM follows power-law dis-
tribution as desired. Further, CAHM model under-reports network performance
as compared to P-CAHM. The ONE simulator along with the P-CAHM mobil-
ity model can be downloaded from https://sites.google.com/a/nirmauni.ac.in/
zunnun/.
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