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Abstract. With the advancement in technology, data produced from
different sources such as Internet, health care, financial companies, social
media, etc. are increases continuously at a rapid rate. Potential growth
of this data in terms of volume, variety and velocity coined a new emerg-
ing area of research, Big Data (BD). Continuous storage, processing,
monitoring (if required), real time analysis are few current challenges
of BD. However, these challenges becomes more critical when data can
be uncertain, inconsistent and redundant. Hence, to reduce the overall
processing time dimensionality reduction (DR) is one of the efficient tech-
niques. Therefore, keeping in view of the above, in this paper, we have
used principle component analysis (PCA) and singular value decomposi-
tion (SVD) techniques to perform DR over BD. We have compared the
performance of both techniques in terms of accuracy and mean square
error (MSR). Comparative results shows that for numerical reasons SVD
is preferred PCA. Whereas, using PCA to train the data in dimension
reduction for an image gives good classification output.
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1 Introduction

Volume of data is increasing exponentially to Tera byte or Peta byte from many
sources like biomedicine, social media, Internet of Things (IoT), etc. All data on
the planet is growing 40% a year. International data corporation (IDC) has pre-
dicted that volume of data will grow above 40 ZB by 2020 [1]. The comparative
growth of digital data over time (measured in years) is shown in Fig. 1(a) which
is indicates, In 2013 digital universe had 5500 EB, but in 2020 it will be 44 ZB,
a 10-fold increment in very short span of time. The top three sources of data
are sales & financial transactions (56%), leads & sales contacts from customer
databases (51%), and email & productivity applications (tied at 39%). Almost a
quarter of respondents (19%) are managing less than a tera byte of data, while
only 7% are managing more than a peta byte. Although the average company
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Fig. 1. (a) World wide growth of digital data, (b) Data growth in Enterprise, (c) Data
& storage increase over the years, (d) Growth of data in heath care sector

manages 162.9 TB of data, the average enterprise has 347.56 TB of data [1],
which is increasing by 33% a year. Figure 1(b) shows the incremental growth in
structured and unstructured data over the years. Health care data covers large
segment of entire digital universe, and it is increasing 48% in a year. All data
in the health care was 153 EB in 2013, but it is expected to be 2,314 EB in
2020. As data volume is growing exponentially, available storage to accommo-
date it also need to be updated accordingly. Comparative study of growth in
data and corresponding storage is shown in Fig. 1(d), indicating that storage is
not increasing as rapidly as data. This exponentially increment in data is very
complex in several situations like to maintain (a) the real time monitoring for (i)
health sector (ii) car parking system (iii) fire alarms, (b) security of (i) offices,
(ii) hospitals (iii) defense area and many more. Currently available computing
infrastructure and analytical algorithms are not able to manage and process the
current form of generated BD. In some situations this data is redundant too,
therefore, cleaning of data is required to maintain high quality. Compared to
raw data, this cleaned data is very small in size but has important information.
To clean this raw data, we have used DR techniques in this paper.

DR is the procedure to convert a dataset have vast number of dimensions into
a data subset with less dimensions ensuring no lose of important information.
The importance of DR is to improve the accuracy of prediction of classifier, and
to decrease the cost of computation. These techniques are basically used to solve
machine learning problems to get quality features in classification and regression.
Some advantages of DR are summarized as under:

— It compresses data and reduces the storage requirements.
— It reduce the computation time.
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— It considers multi-collinearity that gives better performance of the model.
— It eliminates redundant features.
— It helps in eliminating the noise.

To understand the concept of DR we have selected PCA and SVD two differ-
ent techniques. These techniques are investigated thoroughly, and compared by
executing with machine learning algorithm. PCA takes a dataset comprising of
the set of tuples focusing on points lying on a high-dimensional space. PCA also

searches for the directions with which the tuples line up best. Main objectives
of PCA are:

— Form a data table it extricate the vital information.

Keeping the vital information only, it compress the size of the dataset.
— To simplify description of the dataset.

— To analyze the structure, and factors.

The idea behind PCA is to consider a matrix M be the set of tuples and search
for the eigen vectors of MM™ or MTM. The axis related to the first eigen
vector, the one along with which the variance of raw data is maximized. Now,
one can apply this transformation to that data. Similarly, the axis related to the
second eigen vector is the axis along with which the variance of distances from
the first axis is most prominent, and so on. Hence, one can say that PCA is a
data mining process. The high dimensional data is supplanted by the projection
on essential axes. These axes are related to the largest eigenvalues. Finally, raw
data is estimated by data that has less dimensions compared to raw data.

On the other side, SVD is a method to distinguish the dimensions along
with which data points show the highest variation. SVD permits to get the
best estimation of the raw data using less dimensions. This approach permits
a correct portrayal of any matrix. Furthermore, this approach removes the less
essential dimensions of that portrayal to create an approximate portrayal with
any coveted dimensions. SVD decompose an m x n matrix, M into U, S, and V.
This decomposition has the form USV*. Here, U is an m X r matrix, Sisar xr
diagonal matrix, & V is an n X r matrix. We can utilize them to diminish the
number of vectors to the variance we actually required. Diminishing the number
of vectors can remove noise from the raw dataset.

1.1 Research Contribution of Paper
Contributions of this paper are as follows:

— We have reduced the dimension of sparse and dense dataset using PCA and
SVD.

— We have compared the performance of PCA and SVD by applying them on
two different dataset.

The rest of the paper is structured as follows. Section 2 highlights previous work
done by researchers in this domain with pros and cons of individual. Section 3
highlights the need of DR and present the techniques PCA and SVD. Section 4
presents the comparison result of both techniques in terms of accuracy & mean
square error and finally Sect.5 concluded the paper.
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Table 1. Comparison of existing approaches

Author

Problem statement

Solution

Drawback

Swati et al. [2]

The classification of high
dimensional data give
wrong outcomes

A method that utilizes
DR techniques

Another classifier for
classification can be used
instead of ARTMAP to
reduce more time

Person et al. [4]

Show points in plane or
higher dimensional space
by the straight line or
plane

Principle component
analysis

It becomes more
cumbersome when we
have more variables
which involves the
determination of least
root

Oja et al. [7]

PCA for neural networks

A completely parallel
(nonhierarchical) design
that gets orthogonal
vectors spanning an
m-dimensional PCA
subspace

Lateral connections
between the units are not
considered

Sanger et al. [8]

Measure the data in
network results can be
troublesome without
exact learning of the
distribution on the input
data

Optimality principle for
training an unsupervised
feedforward neural
network

The algorithm is only for
single-layer linear
networks

Henry et al. [13]

Identify the dimensions
along which data points

Singular value
decomposition

When there is no change
in one of the axes, SVD
fails

Deerwester et al.
[14]

Dimensionality reduction
issue with regards to
information retrieval

Use SVD for making
features representing
multiple words and after
that comparing them

Implementation issues
will emerge as in raw
vector methods, the
estimation of such
retrieval improving
methods must be
reevaluated

Sarwar et al.
[17], Brand et al.
[16]

The high cost of finding
the SVD

Update an existing SVD
without recomputing it
from scratch

Works well for some
recommender
applications and less well
for others

2 Related Work

This section highlights the work done by various researchers in this domain. Swati
et al. 2] classified the high dimensional raw data that creates incorrect outcomes.
To obtain precise outcomes, high dimensional raw dataset should be compressed
to enhance the accuracy of outcome. Repetitive and the conflicting data should
be eliminated to achieve it. In [2] authors have presented a constraint selection
algorithm to utilizing DR techniques. Because of the DR techniques the compu-
tation time is reduced. Tarun et al. [3] took the DR technique diminish space and
improves the overall performance. For DR meta-heuristics techniques were uti-
lized. To reduce the space DR technique is more valuable; fast information retrieval,
optimized image processing, good visualization, exact classification for area ori-
ented datasets. PCA for DR was introduced by Pearson et al. [4] and modern
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representation was given by Hotelling et al. [5]. Selection of the dimensions using
PCA was explained by Jolliffe et al. [6]. One dimensional PCA was implemented
for neural networks by Hebb learning et al. [7] and later on extended to hierarchi-
cal multidimensional PCA by Sanger [8-10]. Further, in [7] authors have given a
completely parallel plan that concentrates on orthogonal vectors traversing an m-
dimensional PCA subspace. Baldi et al. [11] demonstrated the error surface for lin-
ear, three layer auto-associators with hidden layers of width m has global minima
relating to input weights that traverse the m-dimensional PCA subspace.

SVD was first introduced by Golub et al. [12] and later on Henry & Hofrichter
[13] utilized it to recognized the dimensions along which data points shows the
largest variation. Deerwester et al. [14] analyzed the DR issues with regards to infor-
mation retrieval. They were compared documents using the words they consist of,
and they proposed a method of producing features representing different words and
then comparing them. Recently, Sarwar et al. [15] used SVD for recommender sys-
tems. One of the difficulties of utilizing an SVD-based algorithm for recommender
systems is the high cost to search the SVD. In spite of the fact that it can be com-
puted off-line, finding the SVD can in any case be computationally intractable for
vast databases. To solve this issue, various researchers have analyzed incremental
techniques that changed current SVD without recomputing it from scratch [16,17].
Table 1 show the details of several proposals.

3 Dimensionality Reduction

We live in the age of BD where we do not have just a handful observations and
variables; possibly often hundreds or even thousands of variables that we need
to analyze, identify important trends, patterns, and to gain some insights about
the businesses or for profit organizations to make policy decisions or even to
do some basic research. Hence, we have many variables against which we have
many observation stored in the same table. Now problem is how out of many
observations select smaller group that contains chunk of observations. On the
other hand we might be overwhelmed by the sheer number of variables in the
data sets and some variables further more may be highly correlated or highly
similar to each other creating additional problems with their interpretation and
modeling itself. Hence, we might be interested to reduce the number of variables.

Second issue, we might be interested to revolves the way too many variables
within our data sets and we’re interested to see how our variable hang together,
and how they can describe the datasets in the most efficient way. The variables
may described very similar things and we’re looking for the underlying similar-
ity. Then group those variables together into a single broad dimensions that will
describe our data set most efficiently. It is not advisable to enter all the vari-
ables in a single model because it’s very often quite inefficient, computationally
expensive, and their are high correlations among variables. PCA is especially
helpful in this situation.

To reduce the dimensions of data apply cluster analysis over it. Further to
reduce the dimensions of constructs, PCA and exploratory factor analysis give
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good results. In this paper, we have discussed the reduction of dimension of con-
structs or reduction in number of variables in existing data set. Next subsection
present the PCA in detail.

3.1 Dimensionality Reduction Through Principle Component
Analysis

PCA is a technique for extracting important factors (components) from a vast
set of variables accessible in a dataset. It extricates low dimensional set of ele-
ments from a high dimensional dataset with an objective of getting as much
information as possible. With a less factors, representation it turns out to be
significantly more important. PCA is more valuable when managing three or
more dimensional data. It is always performed on a symmetric correlation or
covariance matrix. This implies that the matrix out to be numeric and have
standardized data. First principal component is a linear combination of original
predictor factors which catches the highest variance in the dataset. It decides
the direction of most variability in the data. Higher the variability caught in first
component implies more information caught by component. No other component
can have variability higher than first principal component. The first principal
component brings out to be a line which is nearest to the data i.e. it limits the
sum of squared distance between a data point and the line. Likewise, we can also
compute the second principal component. Second principal component is a linear
combination of original predictors like first component which catches the rest of
variance in the dataset and is uncorrelated with the first principal component
outcome. That is, the correlation between first and second component should be
zero. The direction of two components are orthogonal, if they are uncorrelated.

All succeeding principal component follows a similar idea, they catch the rest
of variations without being correlated with the past component. The directions
of these components are distinguished in an unsupervised way that means, the
response variable is not used to decide the component direction. Thus, it is an
unsupervised approach. As an example, M is a matrix, rows of which refers to
the point in space, we can compute M7 M and eigen pairs of that point. E, the
matrix, which columns as the eigen vectors, ordered in such a way that largest
eigenvalue comes first. Let the matrix L having the eigenvalues of MT M along
the diagonal, in such a way that largest value comes first and 0’s in other entries.
Then, though M7 Me = Ae = e for every eigen vector e and its related eigen
value ), it is understandable that:

MTME = EL (1)

It has been observed that M F is the points of M changed into another coordinate
space, in which, the first axis that is related to the largest eigen value, is critical.
The variance of points along that axis is the most. The second axis, related to
the second eigen pair, is the next noteworthy in the similar way, and this pattern
proceeds for every eigen pairs. If it is desired that, M is transformed into a space
having less dimensions, then the choice having the most important uses the eigen
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vectors related to the highest eigen values and discards the other eigen values,
i.e., if Ey is the first k£ columns of F, then M E}, is the k-dimensional potrayal
of M. Next subsection presents another DR technique, that is Singular Value
Decomposition.

3.2 Dimensionality Reduction Through Singular Value
Decomposition

SVD permits a accurate portrayal of any matrix, and furthermore SVD makes it
simple to remove the less vital factors of that portrayal to deliver an approximate
portrayal with any coveted number of dimensions. M is an m X n matrix The
rank of M is r. Where the matrix rank r is the largest number of rows or columns
that we can get for nonzero nonlinear combination of the rows which is the all-
zero vector 0, in other words, a set of these rows or columns is independent of
each other. Then,

— U be m X r column-orthonormal matrix. Each columns of this matrix is a
unit vector and the dot product of any two columns is 0.

— V be n x r column-orthonormal matrix. V' is utilized as its transposed form,
so that the rows of V7 that are orthonormal.

— S be a diagonal matrix. Elements, that are not on the main diagonal are 0.
S elements are known as the singular values of M.

If we take a very large matrix M by SVD components U, S, and V, however
these three matrices are also extensive to store. Then,

men = m><7'Sr><7'(Vn><'r)T (2)

To diminish the dimensionality of the three matrices, the most ideal approach
can be set the singular values that are smallest to zero. We can remove s columns
of U and V, if the s smallest singular values are set to 0. Advantages of using
SVD are:

— SVD gives best axis to project on, means, minimum sum of projection error.
— Minimum construction error.

But at the same time SVD have some gaps, which are:

— Interpretability problem: A singular vectors specifies a linear combination
of all input columns and rows.
— Lack of sparsity: Singular vectors are dense.

4 Result and Discussion

In this section, we have compared PCA and SVD in terms of accuracy and
mean square error. PCA works by finding the eigenvectors of the covariance
matrix and ranking them by their respective eigenvalues. The eigenvectors with
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the greatest eigenvalues are the principal components of the data matrix. The
matrix of eigenvectors in PCA are the same as the singular vectors from SVD,
and the eigenvalues generated in PCA are just the squares of the singular val-
ues from SVD. While formally both solutions can be used to calculate the same
principal components and their corresponding eigen/singular values, the extra
step of calculating the covariance matrix in PCA can lead to numerical rounding
errors when calculating the eigenvalues/vectors. Moreover, PCA gives the sub-
space that spans the deviations from the mean data sample as output, and SVD
provides a subspace that spans the data samples themselves (or, a subspace that
spans the deviations from zero).

4.1 Comparison of PCA and SVD in Terms of Accuracy

We have considered multivariate “Spam E-mail Dataset”, of UCI Machine Learn-
ing Repository [18]. Before applying DR techniques accuracy was 93%. Here,
our ultimate objective is to compare performance of PCA and SVD. Figure 2(a)
show as number of attribute decreases, accuracy of PCA and SVD decreases. For
some number of attributes, PCA gives maximum accuracy, but then drops dras-
tically. But in SVD accuracy decreases gradually with decrease in attributes. It
is important to note that PCA (5-7 min) takes lot of time compared to SVD (in
seconds) to process around four thousands records. We have considered another
dataset, “Wisconsin Breast Cancer Dataset” from UCI repository [18]. We have
performed Same steps as performed in previous dataset, to analyse the perfor-
mance of PCA and SVD. Initially the accuracy of data set was 97.54%. For
this dataset, as number of attributes decreases, first accuracy of SVD increases,
but then decreases gradually. But for PCA, accuracy decreases dramatically as
number of attributes decreases, as shown in Fig. 2(b).
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Fig.2. (a) Spam E-mail dataset accuracy (%) Vs. no. of attributes, (b) Wisconsin
breast cancer dataset accuracy (%) Vs. no. of attributes

4.2 Comparison of PCA and SVD in Terms of Mean Square Error

We have also compared PCA and SVD in terms of mean square error. For “Spam
E-mail Dataset”, mean square errors for PCA and SVD are almost same as
shown in Fig. 3(a). For “Wisconsin Breast Cancer Databset” mean square errors
for SVD is more than PCAD, as shown in Fig. 3(b).
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Fig. 3. (a) Spam E-mail dataset mean square error Vs. no. of attributes, (b) Wisconsin
breast cancer dataset mean square error (%) Vs. no. of attributes

5 Conclusions

Their is an urgent requirement to process rapidly generated data with less storage
space. Moreover this data is uncertain, redundant and inconsistent. Therefore,
DR techniques comes in to picture, for fast processing of this data. Their are
many approaches exist in the literature for DR, but we have discussed two of
them, Principle Component Analysis and Singular Value Decomposition. We
have compared the performance of both in terms of accuracy and mean square
root. From comparison we have concluded that through SVD we get the “effective
dimensionality” of a set of points. Moreover, for numerical reasons, it is preferred
to use SVD. As it doesn’t need to compute the covariance matrix which can
introduce some numerical problems. Because there are some pathological cases
where the covariance matrix is very hard to compute. So the SVD is numerically
more efficient. Using the SVD to training data to diminish the dimension in
an image gives good classification output. In future we will explore more DR
approaches and apply tensor decomposition over these.
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