A Novel File Carving Algorithm
for EVTX Logs

Ming Xu®2(®) Jinkai Sun', Ning Zheng', Tong Qiao?, Yiming Wu?, Kai Shi',
Haidong Ge!, and Tao Yang?®)

! Internet and Network Security Laboratory, School of Computer Science
and Technology, Hangzhou Dianzi University, Hangzhou, China
{mxu, 152050160 ,nzheng, 12084232, 151050149}@hdu .edu.cn
2 School of Cyberspace, Hangzhou Dianzi University, Hangzhou, China
{tong.qiao,ymwu}@hdu.edu.cn
3 Key Lab of the Third Research Institute of the Ministry of Public Security,
Shanghai, China
yangtao@stars.org.cn

Abstract. The Microsoft Windows system provides very important
sources of forensic evidence. However, few attention has been paid to
the recovery of the deleted EVTX logs. Without using system metadata,
a novel carving algorithm of EVTX logs is proposed by analyzing the
characteristics and intrinsic structure. Firstly, we reassemble binary data
belonging to fragments of complete EVTX logs to reconstruct the deleted
logs. Secondly, extracting records for the corrupted logs can make the
algorithm robust through the special features of template and substitu-
tion array. Finally, some experiments are given to illustrate the effective-
ness of the proposed algorithm. Moreover, when the logs are fragmented
or corrupted, our algorithm can still perform well.

Keywords: Windows forensics - Windows XML event logs
EVTX Files - File carving - Fragmented files

1 Introduction

Since log files generally link a certain event to the special time, they can provide
very important sources of forensic investigation. It is very easy for an internal
employee to steal or destroy the information of the company computers. During
committing illegal activities, a criminal possibly removes or hides traces after his
crime behavior. It makes operations untraceable with no digital evidence left.
Therefore, the technique which can help us to recover maliciously deleted logs
has received significant attention over the past few years [1].

As a replacement for the Windows event log (EVT) format, the Windows
XML event log (EVTX) format was first introduced in Vista for less storage
through binary XML technology. EVTX logs provide a great deal of basic and
valuable information such as name of the account, created time, record number
© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

P. Matousek and M. Schmiedecker (Eds.): ICDF2C 2017, LNICST 216, pp. 97-105, 2018.
https://doi.org/10.1007/978-3-319-73697-6_7

98 M. Xu et al.

and event ID which could be used to identify the specific kind of an event. For
instance, event ID 4624 means that an account was logged on. It is confirmed
that a criminal logged on a computer at a certain time associating with the
included time and username.

Nevertheless, criminals are always expected to conceal their criminal records
by deleting logs. Because of file fragmentation on actual file systems [2], it is
too time consuming to use a brute-force approach dealing with each possible
order without file system information. Thus we present a novel carving algorithm
to extract deleted records and demonstrate the effectiveness of our proposed

algorithm by comparing it with the commercial forensic software Encase’.

2 Related Work

Several researchers have noted that logs of Windows contain a large amount of
useful digital evidence [3,4]. Schuster first provides description about the newer
EVTX format [5], and XML technology is adopted to parse Vista event log files
[6]. For different Windows systems, Windows 8 event log format is introduced
[7]. In addition, Do et al. present a Windows event forensic process for analyzing
log files [8].

Moreover, researchers focus on caving contiguous files firstly [9,10]. For frag-
mented files, some carving algorithms based on file signature are proposed [11,12]
and a novel framework is designed to resolve this problem [2,13]. Unfortunately,
there has been relatively few papers published for file carving of the EVTX logs.
Therefore, in this context, we propose a novel file carving algorithm to deal with
this challenge.

3 Description of EVTX Logs

By investigating the characteristics and internal structure of EVTX Logs (see
Fig. 1), we can smoothly establish our algorithm for realizing forensics.

3.1 File Header

Each log file contains a file header, which describes the basic information of
the file. A file header occupies 4096 bytes space which is a complete cluster,
but uses only 128 bytes actually. In our algorithm, the checksum which verifies
integrity of the file header is gained through the CRC32 (Cyclic Redundancy
Check) method to calculate the first 120 bytes of the file header. We use magic
string “ElfFile” and checksum to find a integrated file header for marking the
following chunk as the first chunk of the file.

! EnCase offers investigators the flexibility to collect critical evidence including text
messages, call records, pictures, graphics, and much more.

A Novel File Carving Algorithm for EVTX Logs 99

/ Chunk header

/ 4 File head / Number of
z Ile header / first record / . .
4 / in file /| Magic string
e /
s Magic string , Number of //
e / last record /
in file
e Check Sum / / Length
Data /

LOg flle , checksum //
checeam | | [Record ID - —
Chunk S - Substitution

N . array
\\\ . Record Binary XML

N AN < Template

AN AN Repeated >~
N A ~

length

File Chunk Record Binary XML

Fig. 1. File structure

3.2 Chunk Header

Each chunk consists of a smaller header and a series of event records. It starts
with the magic string “ElIfChnk”, which helps to identify the chunk. Chunk
header provides two different sets of counters for record ID?, and for the same
chunk it is safe to assume that record ID of the included record is in the range
between number of first record in file and number of last record in file. It can
contribute to determining whether a record belongs to the original chunk by the
information of the chunk header.

Checksum is important for guaranteeing the integrity of the chunk. Data
checksum is calculated for the CRC32 of all the records data belonging to this
chunk. In addition, header checksum is the CRC32 of the first 120 bytes and
bytes 128 to 512 of the chunk header. Therefore, we can use header checksum to
confirm the integrity of the chunk header and data checksum to check whether
the records of chunk are found completely.

3.3 Record

Each event record contains basic information. A fragment belongs to a record
potentially for the existence of the magic string “**”. Length and repeated length
allow us to find a complete record.

The main content of the record is coded through the binary XML technology.
Binary XML mainly involves two concepts: template and substitution array.
Binary XML starts with a template which is transformed from a sequence of
tokens and a template has some substitution tokens which are needed to be
filled with the value of substitution array (see Fig.2). Template is immediately
followed by the substitution array. For each substitution, it lists size and data
type (see Fig. 3), and uses actual value to fill into the corresponding substitution
token to comprise complete plain text XML. For one chunk, most of records only

2 Record ID is the same as record number.

100 M. Xu et al.

have a reference of the template to reduce storage space. Probably a record in the
fragment cannot be recovered for its dependence of the template. It is observed
that the count of the substitution array is 18 or 20. Additionally, length and type
should be followed by the hexadecimal value 0x00 [5]. Therefore we can locate
the position of the substitution array, and even determine whether the record is
complete by checking integrity of the substitution array.

<Event xmins="http://schemas.microsoft.com/win/2004/08 events/event'> The number of data(18 or 20)
<System> Length[0] Type[0] 0x00

<EventID>substition 3, type 6</EventID> Lengthin-1] Typeln-1] 0x00

<EventRecordID>substition 10, type 10<EventRecordID> Datal0]
</SySt€m>
<[Fvent> Data[n-1]
Fig. 2. Template with unfilled substitution array Fig. 3. Substitution array

4 The Proposed Approach

In this section, it is proposed to introduce our algorithm showed in Fig.4. The
algorithm mainly includes three parts: pre-processing data, reassembling frag-
ments and extracting corrupted records.

4.1 Data Pre-processing

In this stage, the fragments belonging to logs should be effectively classified with
others. The fragmentation points which normally bring challenge in file carving
can only be present at the boundary between two clusters [2]. Since the log data
may be scattered in any part of the image, we need to locate all the fragments
belonging to EVTX logs by using different magic string to finding the first cluster
of the fragment. We recommend to use 4 KB cluster as the size of per scanning,
since 4 KB cluster is default for all NTFS file systems since Windows NT 4.0.

Separate lists are designed base on the mentioned file structures. Each
included element of the lists which can be regraded as the fragment will store cor-
responding binary data. Figure 5 illustrates the flowchart of data pre-processing,
and these lists are as follows:

— File list (simply as Listy): in List s, each elementy as the start of file contains
a file header, a chunk header and included records.

— Chunk list (simply as List.): in List., each element. as an potential chunk
contains a chunk header and included records.

— Record list (simply as List,): in List,, each element, is regarded as an assem-
blage of fragmented records.

A Novel File Carving Algorithm for EVTX Logs 101

Computers running Microsoft Windows

| |
i |
| |
I

! System disk |
| i
| |

stores elementin stores comesponding
Forensic| software
e
F i Tt vith il eacer magicsring & ks ext churk s the
| ; s hecsumeqal M Gatorthefle
i ‘ Image acquisition ‘ !
I
! I
! I
| B stores record number2)
Data pre-processin ! Sarts with chunk header magic string and 5
| ‘ pre-p 9 ! s eacrcheckumequal terd) o cetnd e
! I |
I
; ¥ v ¥ ;
no
| Fragment Fragment Fragment | ¥
| of EVTX log of EVTX log of EVTX log | \7
| | i
! [I I ! i 10 contans a ecord?
I
| v |
. ! Ve
| ‘ Fragmentation reassembly ‘ ! f
I
|
I
‘ i
| —— ! rom adacentlogicalcsters binarydata
I .
| Log files i 1
i Loy
! i
| ; stores record [Dand
i . Tecord Do the st recrd is eqal vith lengtf2) ofeach
! ‘ Corrupted records extracting ‘ i il s hren el ot
I
I | T
I
I
|
|
I
_ |
I . I
| rks chunk
} Text files | (fanigrs) , s
|
T)

Fig. 4. Illustration of architecture Fig.5. The flowchart of data pre-
processing

4.2 Fragmentation Reassembly

Before reassembly, we need to process the pinpointed fragments and reassemble
them to reconstruct original files. Only the complete chunks can be combined
into a valid log file, so we have to recover chunks belonging to the original file
in the first step.

Afterwards, we generate log files by using complete chunks. Field Channel of
the binary XML is used to determine whether a chunk belongs to the original
file. It should be noted that the value of field Channel is not only stored in the
substitution array but also in template. In order to acquire templates, we need
to adopt XML technology to parse the complete chunks based on the previous
research [5,6]. If one element cannot be used to reassemble finally, it will be
added to Brokenlist.

For clarity, we introduce a discriminator for merging and a simplified algo-
rithm is presented in Algorithm 1.

— Record ID: the record ID sequence of records in one chunk will be consistent
and two adjacent chunks are supposed to have consecutive record ID.

102 M. Xu et al.

— Channel: probably two logs have many same record ID, but different chunks
from the same file will have the same value of the field Channel which can be
used to reassemble chunks from the same log.

— Integrity of the substitution array: if length of the record which is to be con-
nected is larger than 4 KB, the only way is to try all the situations of frag-
mentation to check the integrity of the substitution array. A simple instance
uses Fig. 6 to illustrate it. If the size of uncertain data is 4 KB, we need to
determine which cluster the potential 4 KB cluster is adjacent to the previous
cluster or the next cluster by verifying the integrity of the substitution array.

— Checksum: we need to calculate the checksum of all the records data belonging
to this chunk when finding the last record of the chunk.

Algorithm 1. Fragmentation Reassembly Algorithm

Input: Listy, List., List,
Output: Log files, Broken list
for elementy, element. € Listy, List. do
for element, € List, do
merge element, into element, elment, based on discriminator
if the last record of the chunk is found then
mark elementy, lement. as complete

end if
end for
end for
parse templates of the complete chunks
for elementy € Completelisty do
for element. € Completelist. do
merge element. intolisty based on discriminator
generate a log file using corresponding binary data
end for
end for
Brokenlist «— restof elment
return Log files, Broken list

Potential record Potential record

N
A ~N - N

p
| V7772222) N % % Zm? |

Previous cluster

Potential 4KB cluster Next cluster

(a) The potential 4KB cluster is adjacent (b) The potential 4KB cluster is adjacent
to the previous cluster to the next cluster

Previous cluster Potential 4KB cluster Next cluster

Fig. 6. Reassembly of a record larger than 4 KB

4.3 Corrupted Records Extracting

Since EVTX log have three types of checksum to verify the integrity of a EVTX
format file, any corruption results in that a log cannot be open by Windows.
And a corrupted log file make its fragments not be merged. The only way to
collect information of corrupted files is to match original templates and store

A Novel File Carving Algorithm for EVTX Logs 103

generated plain text XML in other format files (e.g. text file). A warning is that
this process may recover the incorrect records which are generated by Windows
event logging service randomly.

Experimentally, the same template shared by different records in the same
chunk must have only one template id. Only if the type of each substitution
is compatible with template can the substitution array use value to fill into
the corresponding substitution tokens. For each record in the Brokenlist, we
consider a brute force approach to search its original template and write plain
text XML into a text file.

5 Experiment and Evaluation

These experiments are designed to demonstrate the effectiveness of cav-
ing algorithm in dealing with the situation of unavailable file system meta-
data. In Windows, all computers event logs are normally found in: C
Windows\System32\winevt\Logs\. Due to the limitation of the public Win-
dows images, we use our own 20 GB system disk images collected from three
operating systems (Windows 7, Windows 8 and Windows 10). Note that, we use
WinHex? to acquire the system disk image of computers for guaranteeing the
reliability and integrity of raw data [14].

First of all, we save original files for calculating accuracy. We use regular
deletion method to remove all the log files and make forensic images of system
disk from each operation systems. The common evaluation method is to compare
whether there exists the same record. First, all the records acquired from the
original log files are to be gathered manually and analysed statistically. Then we
use the same method in the recovered log files. Finally, by comparing the records
from the original log files with recovered ones, we can determine whether the
experimental result is effective or not.

We draw support from EnCase which is a widely-used commercial forensic
software utilized by some law enforcement agencies. Unfortunately, no records
are recovered by EnCase for the dependance of system metadata. Because of
three types of verification in the EVTX format file, the recovered log files can
guarantee their correctness. Zero-error carving strategy means that we only try
to recover complete log files as far as possible, thus no error records will be recov-
ered. Complete carving strategy means we also recover records from the log files
which are overwritten or corrupted during deleting to write plain text XML
into text files. Moreover, the precision rate might decrease with the increase-
ment of recall rate. All things considered (see Table1)?, if there can exist error
records, we recommend to use complete carving during investigation for better
comprehensive evaluation.

3 WinHex is a disk editor and a hex editor useful in data recovery and forensics.
* We use R/O(Recovered/original), PR(Precision rate), RR(Recall rate), F(F-value)
and Time to evaluate the quality of results accurately.

104 M. Xu et al.

Table 1. Results of different carving strategies

(a) After zero-error carving (b) After complete carving
System R/O PR RR F Time System R/O PR RR F Time
Win 10{15105/15248[100% [99.06%|99.53% | 158s Win 10{15292/15248(98.85%(99.13%|98.99% | 160s
Win 8 | 5124/6020 [100%(85.11%|91.96% | 159s ‘Win 8 | 5777/6020 100% [95.96%|97.94% | 165s
Win 7 | 4006/5210 |100% |76.89% |86.94% | 162s ‘Win 7 | 4842/5210 [97.44%|90.57%|93.88% | 171s

6 Summary

Since EVTX log files have tremendous forensic potential data in Windows foren-
sic investigation, we present a carving algorithm for them without using the
file system metadata in this paper. The traditional recovery method is highly
dependent on file system metadata, thus the deleted files can not be recovered.
By exploring the characteristics of Windows XML event log files, we design a
caving algorithm to recover fragmented log files and extract corrupted records
into text files. The numerical experiments reveal that our algorithm can perform
well under the situation that log files are fragmented even corrupted.

Acknowledgment. This work is supported by the National Key R&D Plan of China
under grant no. 2016YFB0800201, the Natural Science Foundation of China under
grant no. 61070212 and 61572165, the State Key Program of Zhejiang Province Natural
Science Foundation of China under grant no. LZ15F020003, the Key research and
development plan project of Zhejiang Province under grant no. 2017C01065, the Key
Lab of Information Network Security, Ministry of Public Security, under grant no.
C16603.

References

1. Sharma, H., Sabharwal, N.: Investigating the implications of virtual forensics. In:
2012 International Conference on Advances in Engineering, Science and Manage-
ment (ICAESM), pp. 617-620. IEEE (2012)

2. Garfinkel, S.L.: Carving contiguous and fragmented files with fast object validation.
Digit. Invest. 4, 2-12 (2007)

3. Murphey, R.: Automated windows event log forensics. Digit. Invest. 4, 92-100
(2007)

4. Al-Nemrat, A., Ibrahim, N., Jahankhan, H.: Sufficiency of windows event log as
evidence in digital forensics. University of East London, London

5. Schuster, A.: Introducing the Microsoft Vista event log file format. Digit. Invest.
4, 65-72 (2007)

6. Xiaoyu, H., Shunxiang, W.: Vista event log file parsing based on XML technology.
In: 4th International Conference on Computer Science & Education, ICCSE 2009,
pp. 1186-1190. IEEE (2009)

7. Talebi, J., Dehghantanha, A., Mahmoud, R.: Introducing and analysis of the
Windows 8 event log for forensic purposes. In: Garain, U., Shafait, F. (eds.) IWCF
2012/2014. LNCS, vol. 8915, pp. 145-162. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-20125-2_13

https://doi.org/10.1007/978-3-319-20125-2_13
https://doi.org/10.1007/978-3-319-20125-2_13

10.

11.

12.

13.
14.

A Novel File Carving Algorithm for EVTX Logs 105

Do, Q., Martini, B., Looi, J., Wang, Y., Choo, K.-K.: Windows event forensic pro-
cess. In: Peterson, G., Shenoi, S. (eds.) DigitalForensics 2014. TAICT, vol. 433, pp.
87-100. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44952-3_7
Mikus, N.: An analysis of disc carving techniques. Technical report, DTIC Docu-
ment (2005)

Richard III, G.G., Roussev, V.: Scalpel: a frugal, high performance file carver. In:
Refereed Proceedings of the Digital Forensic Research Workshop, DFRWS 2005,
pp. 1-10, Astor Crowne Plaza, New Orleans, Louisiana, USA, August (2005)
Karresand, M., Shahmehri, N.: Reassembly of fragmented JPEG images containing
restart markers. In: European Conference on Computer Network Defense, EC2ND
2008, pp. 25-32. IEEE (2008)

Na, G.-H., Shim, K.-S., Moon, K.-W., Kong, S.G., Kim, E.-S., Lee, J.: Frame-based
recovery of corrupted video files using video codec specifications. IEEE Trans.
Image Process. 23(2), 517-526 (2014)

Cohen, M.I.: Advanced carving techniques. Digital Invest. 4(3), 119-128 (2007)
Boddington, R., Hobbs, V., Mann, G.: Validating digital evidence for legal argu-
ment, p. 42 (2008)

https://doi.org/10.1007/978-3-662-44952-3_7

	A Novel File Carving Algorithm for EVTX Logs
	1 Introduction
	2 Related Work
	3 Description of EVTX Logs
	3.1 File Header
	3.2 Chunk Header
	3.3 Record

	4 The Proposed Approach
	4.1 Data Pre-processing
	4.2 Fragmentation Reassembly
	4.3 Corrupted Records Extracting

	5 Experiment and Evaluation
	6 Summary
	References

