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Abstract. Memory acquisition is essential to defeat anti-forensic operating
system features and investigate clever cyberattacks that leave little or no evi-
dence on physical storage media. The forensic community has developed tools
to acquire physical memory from Apple’s Macintosh computers, but they have
not much been tested. This work in progress tested three major OS X
memory-acquisition tools. Although all tools tested could capture system
memory in most cases, the open-source tool OSXPmem bettered its proprietary
counterparts in reliability and support for memory configurations and versions
of the OS X operating system.

Keywords: Digital forensics � Acquisition �Main memory � Apple �Macintosh
OSX � Testing � MacQuisition � OSXPMem � RECON � Reserved area

1 Introduction

Recent Macintosh OS X operating systems incorporate many recent anti-forensic
features, most notably cloud storage and encryption. Users can fully encrypt many
things including whole operating system volumes, making it impossible to recover
forensic evidence in a reasonable time frame without passwords. Because of this,
forensics on the main memory of such systems is increasingly valuable. Memory
forensics can recover encryption keys, network packets, injected code, hidden pro-
cesses and communications from volatile memory.

While there are many memory-acquisition tools and analysis programs for Win-
dows operating systems, there are only a few for Macintosh systems. Ligh et al. (2014)
provides a survey of information pertaining to Macintosh OS X memory forensics.
A resource is the Rekall Memory Forensic Framework which began as a branch within
the Volatility Project (Volatility, 2015) and became a stand-alone project in December
2013 (Rekall, 2015). Since main-memory capture is challenging, it is helpful to
compare these tools to see what differences they have.

2 Methodology

This work tested three tools: BlackBag Technologies MacQuisition, Version 2014R1;
OSXPMem, Version RC3; and Sumuri Forensics RECON, Version 1.0.11 (Leopard,
2015). The systems were first tested with OS X Mavericks (10.9.5), and then after
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upgrading to Yosemite 10.10.1 and 10.10.2. Each tool was directed to write a memory
capture to an external USB 3 hard drive (7200RPM). In total 450 captures were
performed (50 machines, 3 operating systems, and 3 forensic tools).

We evaluated the success rate with respect to (1) the ability of the tools to write a
physical-memory capture without crashing the computer system; (2) how obtrusive the
tool was (what its memory footprint was and how long it took to run); and (3) its
ability to produce a capture from which standard forensic artifacts could be recovered
using two memory-analysis tools, the Volatility Framework and the Rekall Memory
Forensic Framework. The Rekall plugins used were arp, ifconfig, lsof, mount, net-
stat, psaux, and route, and the Volatility plugins used were mac_arp, mac_bash,
mac-ifconfig, mac_lsof, mac-mount, mac_netstat, mac_psaux, and mac_route. We were
particularly interested in differences between the memory snapshots obtained since they
could indicate functional differences or coverage gaps of the tools.

The Passware Password Recovery Kit Forensic Version 13.1 was used to the
confirm that encryption keys for FileVault2 were located within the OS X memory
captures and could be used to decrypt the volume. To do this, FileVault2 was enabled
on a MacBook Pro and a Mac Pro computer running Mavericks as well as on a
MacBook Pro and a Mac Pro computer running Yosemite. Memory captures were done
with MacQuisition, OSXPMem, and RECON on both the MacBook Pro and Mac Pro
computers running Mavericks. RECON failed to capture physical memory from the
Mac Pro computers. OSXPMem was used to capture memory from the Mac Pro and
MacBook Pro running Yosemite. MacQuisition does not support Yosemite.

The rate at which memory changes affects the memory dumps acquired by tools. To
analyze this we created a virtual machine using VMware Fusion Professional version
7.1.1, and used VMware to take a series of snapshots. The virtual machine ran Mav-
ericks and was configured to use two processor cores and 8 GiB of memory. The host
machine was a MacBook Pro (Retina, 15-inch, Mid 2014) with a 2.8 GHz Intel i7
processor and 16 GiB of 1600 MHz DDR3 memory. Our procedure was: (1) log into
the VM and take a snapshot every fifteen minutes; (2) use the Volatility plugin to
decompress the snapshots; (3) create MD5 hashes for every 4 KiB block using
MD5Deep; (4) compare the MD5 hashes with the original hashes and note differences;
(5) and repeat three times. We compared memory captured by each of our tools against
the VM Snapshot that completed at a time closest to when each capture completed. We
then compared the memory captures taken with the tools. To control for potential
variations due to VMware’s environment, we tested the tools on a physical Mac Mini
(late 2014) with a 2.6 GHz Intel i7 processor, and 8 GiB of 1600 MHz DDR3 memory,
running Mavericks. The memory captures were taken over a period of 30 min.

3 Results

Memory-acquisition speeds were within 7% for the three tools. Physical memory sizes
were 67.45 MiB for MacQuisition, 0.944 MiB for OSXPmem, and 206.7 MiB for
RECON, and shared memory and private memory sizes were proportional. OSXPmem
had the advantage that it is a command-line tool without a graphical user interface.
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We observed several crashes caused by tools. The machines that crashed were not
the same nor did any one machine crash more than once. After a crash, a second
acquisition attempt was often successful after the machines restarted. The exception
was when RECON was used to acquire memory from the Mac Pros with 64 GiB of
RAM; all the machines crashed and additional attempts also failed. Valuable forensic
data is often permanently lost in a crash, so crash danger is important. Nonetheless, our
experiments confirmed that if a memory capture was completed without a crash, then
the capture contained every forensic artifact found by the other tools on any run.

The Passware Password Recovery Kit located the encryption keys in all of the
memory captures and successfully decrypted the FileVault2 volumes. The OS X user’s
login password was located within all the memory captures using the hex editor iBored
by searching for the term “longname” which we found frequently near a user’s pass-
word. The password remained in the same block of memory during the thirty-minute
period on all captures.

In another experiment, VM snapshots were taken over a period on a VM with
Mac OS version Mavericks installed. A Python script counted the 4 KiB blocks whose
hash values changed from the original snapshot. Results showed that on average only
5.33% of the blocks had changed after 30 min when running default processes.

Memory captures were considerably larger than the allocated physical memory due
to the presence of reserved areas. The datasheet for 4th Generation Intel Core Processor
Address Map describes reserved areas below 4 GiB that do not belong to the DRAM.
A similar structure was observed in the virtual machines. The vmem files containing
the memory in the VM snapshots were converted to raw images. Each vmem file as
well as each tool memory capture was 9 GiB in size, though the VM configuration
allocated 8 GiB to physical memory. (Stuttgen and Cohen, 2015) discuss how physical
memory addresses are used for communication with devices (video cards, PCI cards,
and flash memory) on the motherboard with memory-mapped I/O. The 1 GiB block
ranges observed between 3 GiB and 4 GiB appear to be reserved for this. The chipset
routes memory access around these reserved regions so that all RAM is used. This
increases the size of memory captures.

All three tools captured the same range of null values observed in the first half of
the memory graphs. The MacQuisition device log reported “bad addresses” were
padded with zeroes beginning at block 786432 and ending at block 1048575. Each
block contained 4096 bytes resulting in approximately 1 GiB of null characters. We
inspected the block range in all three tool memory captures with a hex editor and
confirmed that all the tools padded the same block range with zeroes.

Comparisons were done of the tool memory captures and the VM memory snap-
shots taken at 1 min after logging in to system, as well as the results of each tool
memory capture compared to each other. Overall, we saw similar regions of non-null
matches in all comparisons. However, the tool memory captures showed that most of
the null characters observed in the VM snapshots were overwritten with data when the
acquisition tools themselves acquired the memory. This would suggest as the
memory-capture tools run, blocks of memory containing null characters get changed
while other blocks remain mostly unchanged. Since these regions are large and outside
the memory space used by the tools, it is unlikely that the tools themselves are
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changing the data directly. Rather, we conclude that some other mechanism of the
operating system is writing to unused space in memory during the acquisition process.

Figure 1 shows example 4 KiB block matches between the tool-acquired memory
captures and the VM snapshot SV1 (initiated at time = 1 min). The three plots show
MacQuisition, OSXPmem, and RECON. Red blocks represent matches to the initial
memory state which do not contain null (zero) characters; grey blocks represent blocks
that match but contain null characters; and the white blocks represent blocks that have
changed and do not match. The top of the diagram represents the beginning of memory,
and each row represents 1024 blocks from left to right in 4 KiB block increments, so
each horizontal slice represents 4 MiB of memory.

The OSXPmem data shows a reserved area that appears to agree with the output of
the MacQuisition captures, again beginning at approximately the 2 GiB and continuing
to 4 GiB. A range of blocks located just before the 6 GiB mark changed between
OM2.5 and OM30. The edge of the red area in the figure on the right has shifted and
the region of matching blocks is less. The RECON data agree with other tools about the

Fig. 1. Comparison of MacQuisition, OSXPmem, and RECON (left to right) on an analogous
memory state. (Color figure online)
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location of reserved regions. The graphs also showed that a range of blocks, located
just before the 6 GiB mark, changed between the memory capture at T2.5 and the
capture at T30. The edge of the red areas between the figures was similar to before.

Data showed that the matching blocks without null characters (red) change over
time by a relatively small percentage. These results were supported by the VM snap-
shots. It is clear that certain regions of memory are consistently captured while other
regions are always in flux. Tests showed that slightly more than the first GiB of the
memory capture always matches the VM snapshot. Many null values occur between the
third and fourth GiB of memory which appears to be a reserved area. Two more
significant blocks of null characters follow while the remaining memory appears to
have changed during the acquisition.

Our tests showed that the tools represented the non-match regions (white areas)
differently. This suggests not only that the tools are introducing considerable change to
the memory space during the acquisition process, but also that each is changing the
space in a unique way, so the changes from different tools do not match each other.

The memory-acquisition tools were also tested in non-virtual environment. The
Mac Mini was configured with 8 GiB of physical memory, and each tool acquired a
9.74 GiB raw file. All three tools captured the same range of null values in the first half
of the capture. This reserved area appears to be larger than in the VM memory images.
Analysis with a hex editor determined that the reserved region began at 2.17 GiB and
continued until 4 GiB. Data also showed that the block matches that contain non-null
characters begin at approximately 30% of the total captured material, but remain rel-
atively stable, declining by less than 10% over a 30 min period (Fig. 2). The match
percent was less than what observed in the virtual environment.

4 Conclusions

MacQuisition, RECON, and OSXPmem were all successful in capturing memory from
OS X Mavericks on Macintosh computers. They captured valuable artifacts such as
FileVault2 encryption keys and volatile system data. Nonetheless, (Ligh et al., 2015)

Fig. 2. Match Percentage Comparison over Time (“Column 1” = RECON).
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acknowledges the risk of memory-acquisition tools causing system crashes as we
observed since these can be sensitive to the OS X version or the installed hardware on the
system. The tool may access a reserved region or interfere with a system-critical function.

Our results showed that size of the memory capture was constant over the tools.
Memory dumps were larger than the amount of physical memory (17.99 GiB versus 16
GiB for MacBook Pro was typical) due to regions reserved for firmware, ROM, and
other PCI resources.

Comparison of the VM snapshots taken over thirty minutes showed that with only
the default processes, memory changed only slightly. Volatility and Rekall revealed
many valuable forensic artifacts remaining such as encryption keys and volatile system
data. Our evidence further suggested that the tools are acquiring the blocks of memory
that are not changing between captures. Though there were significant regions of
memory that did not match between the tool-acquired dumps and the VM snapshots,
these regions corresponded with memory blocks that contained nulls in the baseline.
Our analysis of forensic artifacts using the Volatility and Rekall frameworks failed to
detect any situations in which the non-matching regions corresponded to a loss of
forensic evidence, since the regions or memory appear to have contained nulls before
the memory acquisition.

The experiments with a non-virtual environment showed the tools successfully
captured memory from a Mac Mini running Mavericks. We observed the memory
captures from all three of the tools appeared similar as far as the blocks that matched
and did not match as well for the blocks containing null characters. The results also
agree with the results of our tests in the virtual environment in that the regions of
memory that match between comparisons did not change much over time.

Future work will examine in more detail the exact changes in files over time and the
discrepancies between different tools. Discrepancies suggest, without having to analyze
the operating system, where volatile memory stores key operating-system parameters
and links. Future work will also investigate the effects of simultaneously running
various kinds of software on the operating-system memory images.
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