Approxis: A Fast, Robust, Lightweight
and Approximate Disassembler Considered
in the Field of Memory Forensics

Lorenz Liebler®™ and Harald Baier

da/sec - Biometrics and Internet Security Research Group,
University of Applied Sciences, Darmstadt, Germany
{lorenz.liebler,harald.baier}@h-da.de

Abstract. The discipline of detecting known and unknown code struc-
tures in large sets of data is a challenging task. An example could be the
examination of memory dumps of an infected system. Memory forensic
frameworks rely on system relevant information and the examination of
structures which are located within a dump itself. With the constant
increasing size of used memory, the creation of additional methods of
data reduction (similar to those in disk forensics) are eligible. In the
field of disk forensics, approximate matching algorithms are well known.
However, in the field of memory forensics, the application of those algo-
rithms is impractical. In this paper we introduce approxis: an approxi-
mate disassembler. In contrary to other disassemblers our approach does
not rely on an internal disassembler engine, as the system is based on
a compressed set of ground truth x86 and x86-64 assemblies. Our first
prototype shows a good computational performance and is able to detect
code in large sets of raw data. Additionally, our current implementation
is able to differentiate between architectures while disassembling. Sum-
marized, approxis is the first attempt to interface approximate matching
with the field of memory forensics.

Keywords: Approximate disassembly + Approximate matching
Disassembly * Binary analysis + Memory forensics

1 Introduction

Detecting known malicious code in memory is a challenging task. This is mainly
due to two reasons: first, malware authors tend to obfuscate their code by tam-
pering it for each instance. Second, code in memory differs from persistent code
because of changes performed by the memory loader (e.g., the security feature
Address Space Layout Randomization (ASLR) makes it impossible to predict the
final state of an executable right before run time). Hence an approach to iden-
tify malicious code within a memory forensics investigation by comparing code
fragments in its untampered shape (e.g., as an image on disk) to its memory
loaded representation (e.g., a module with variable code) is a non-trivial task.
© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

P. Matousek and M. Schmiedecker (Eds.): ICDF2C 2017, LNICST 216, pp. 158-172, 2018.
https://doi.org/10.1007/978-3-319-73697-6_12



Approxis: Approximate Disassembly 159

Memory forensic tools like volatility use system related structures to extract
loaded executables and to list executed processes on a system. The classical
approach to identify loaded malware is performed with the help of signatures,
static byte sequences or by the examination of access protections. White et al.
[10] formulate requirements of investigating a memory image and postulate that
methods of data reduction (similar to those in disk forensics) are eligible. In
the field of disk forensics approximate matching algorithms (a.k.a. similarity
hashing or fuzzy hashing) represent a robust and fast instrument to differentiate
between known and unknown data fragments [3,6]. However, White et al. [10]
claim that approximate matching algorithms are not suitable in the course of
memory forensics, as code in memory always differs to on disk.

In this paper we argue that the concept of approximate matching may be
transferred from post-mortem or network forensics to the field of memory foren-
sics. We differentiate between two stages of research to succeed. First, a technical
component is needed, which acquires portions of code in different domains and
extracts these fragments out of vast amounts of unknown data. Second, the
acquired code fragments must be comparable. As the existing approaches in the
field of memory forensics try to solve both issues at once by creating a stack
of dependencies and accepting limitations of applicability [8,10], our approach
focuses on the technical component first and introduces an interface to transfer
the overall problem of code detection into the domain of approximate matching.

Our main contribution of this paper is the technical acquisition component
approxis: a lightweight, robust, fast and approximate disassembler as a prereq-
uisite for memory-based approximate matching. The goal of approxis is to build
a technical component for the usage in digital forensics, however, approxis may
be used in different fields like real-time systems, too. Its functionality is compa-
rable to a basic length-disassembler approach with additional features.

Our approach is unaware of the full instruction encoding scheme of x86 or
x86-64 platforms: by the usage of 4.2 GiB precompiled ELF (Executable and
Linking Format) files and its corresponding ground truth assembly structure
obtained by [1], we build up a decision tree of byte instructions. Each path of
the tree represents the decoding process of a byte sequence to its correspond-
ing instruction length. We use the opcode and mnemonic frequencies to assist
the disassembling process and to differentiate between code and non-code byte
sequences. The overall goal of approxis is not to reach the accuracy of profes-
sional disassemblers, but to outreach the capabilities of a simple length disas-
sembler.

We evaluate our approach in different fields of application. First, we show the
promising disassembling accuracy of approxis compared to objdump, a widely
distributed and often used linear disassembler. Second, our approach is able to
distinguish between code and data. Third, we demonstrate the capabilities to
identify interleaved segments of code within large sets of raw binary data. Our
current implementation introduces the possibility to determine the architecture
of code during the process of disassembling. Finally, we demonstrate the compu-
tational performance of approxis by the application on a raw memory image.



160 L. Liebler and H. Baier

It is important to outline the conditions and the operational field of
approxis, as our approach should not be considered in the well known domains
of binary analysis. Thus, even if the final evaluation of approxis could seem to
be incomplete to the reader, we argue that the extensive introduction of our app-
roach in the field of memory forensics is important to understand the following
design decisions. Additionally, it is somewhat negligible and deceptive to com-
pare our approach to other disassemblers. However, our current implementation
of approxis is designed for processing large portions of raw memory dumps, so
a straight comparison with other disassemblers is not always valid.

The remainder of this paper is organized as follows: In Sect.2 we give an
overview of related work. We introduce key features of existing research and
describe instances of different disassemblers. In Sect. 3 we define central require-
ments which should be fulfilled by approxis. In Sect. 4 we briefly introduce the
x86 decoding scheme and the challenges of disassembling. We also introduce the
results of analyzing our ground truth assemblies obtained by [1], which build
the foundation for our code detection and approximate disassembling approach.
In Sect. 5 we introduce approxis and its functionality. In Sect. 6 we present our
assessment and experimental results. Finally, Sect. 7 concludes this paper.

2 Related Work

Researches discussed different approaches for the application of cryptographic
hash functions on memory fragments. Existing work addresses the problem of
identifying known code by hashing normalized portions of code in memory.
A short survey of existing approaches was given by [10]. In [8] offsets of vari-
able code fragments were used to normalize and hash executables on a page
level. A database of hash templates was created which consists of hash values
and its corresponding offsets. These hash templates are applied on the physical
address space. The comparison between each template and each page lead to
a complexity of O(n *m) for a comparison of n templates against m memory
pages.

The authors of [10] extended the approach and tried to improve the naive
all-against-all comparison introduced by [8]. Therefore, they applied the hashes
on virtual memory pages and used structures in memory to identify a process.
By identifying a process, the lookup of a corresponding hash template could be
performed efficiently. Before creating the hash values, the introduced approaches
convert a present executable from disk to its state in memory and normalize it.
The conversion of disk stored image files to a virtual loaded module was accom-
plished with the help of a virtual Windows PE Loader [10]. The identification
of variable offsets by imitating the loading process of an executable seems legit.
A normalization based on previously disassembling a present sequence of bytes
in memory was not mentioned by the authors.

Recent research of linear disassemblers has shown the significant underes-
timation of linear disassembly and the dualism in the stance on disassembly
in literature [1]. A more exotic form are the so called length-disassemblers,



Approxis: Approximate Disassembly 161

which could be understood as a limited subset of linear disassemblers. A length-
disassembler only extracts the lengths of an instruction. Beside the classical
linear and recursive disassemblers, the authors of [7] introduced an experimen-
tal approach of fast and approximate disassembly. The approach is based on
the statistically examination of the most frequent occurred mnemonics. A set
of extracted sequences of mnemonics have been used to create a lookup table
of predominant bigrams. With the help of this table, a fuzzy 32bit decoding
scheme was proposed, which showed decent results.

As already introduced, approximate matching algorithms can be used to
detect similarities among objects, but also to detect embedded objects or frag-
ment of objects [3,6]. Investigators can use it to differ between non-relevant and
relevant fragments in large sets of suspicious data. In the course of memory foren-
sics this approach would obviously struggle with volatile instruction operands
and updated byte-sequences. Current approximate matching techniques con-
stantly evolve, e.g. by the integration of better lookup strategies like Cuckoo
Filters [5].

The problem of identifying code structures in large sets of binary data could
be misleadingly compared with the problem of identifying interleaved data within
code sections of a single executable [9]. The major goals of our approach are the
fast identification and the approximate disassembly of code fragments.

3 Requirements of Approximate Disassembling

In this section we introduce and explain four essential requirements for our
research: lightweight, robustness, speed and versatility. These requirements should
be understood as superior and long term goals in the context of applying approx-
imate matching to the field of memory forensics. They have to be respected in
this research and beyond this work. To be able to better describe the fundamen-
tal requirements, we first introduce the central goals of this publication. As the
application of approximate matching algorithms to portions of memory seems
unfeasible due to a unpredictable representation of code in memory, we suggest
a process of normalization after approximate disassembling portions of code in
large sets of raw and mixed data. As this work addresses the step of identifying
and disassembling code in data, we define four major goals:

1. Detect sequences of code in a vast amount of different shaped raw data.
2. Extract sequences of instruction-related bytes with little overhead.

3. Make a statement about the confidence of the code detection process.
4. Determine additional information, like the architecture of the code.

These practical goals describe the motivation of this work, where the follow-
ing requirements describe the bounding conditions to achieve those goals. The
defined requirements are discussed by recalling some central properties of the
introduced competing approaches and by considering the mentioned goals.

The first requirement lightweight aims to reduce the stack of dependencies of
the target system with a focus on the instruction set and the loader traces. In



162 L. Liebler and H. Baier

contrast to existing approaches, we propose a normalization based on previously
disassembling code in different states of an executable. We consider this approach
significant more lightweight than imitating loader traces with the help of a self-
constructed virtual loader. A disassembler is therefore less interleaved to record
the changes of a memory loader to an image file.

Previous work to detect known fragments of code (e.g., the approach intro-
duced by [10]) relies on the correct identification of a running process. This
offers new degrees of bypassing and obfuscation to the malware author, e.g., by
unlinking Virtual Address Descriptor (VAD) nodes using Direct Kernel Object
Manipulation [4]. Our second requirement robustness means to identify a code
fragment without process structures and being thus more robust against obfus-
cation compared to competing approaches.

Our third requirement is speed, which is a central requirement adopted from
the field of approximate matching. In our current stage of research the detection
and extraction of code from a vast amount of data has to be done with good
computational performance. As we are interested in an approximate disassem-
bler, we trade computational performance more important than accuracy of the
disassembled code. However, the degree of disassembling should enable further
normalization or the reduction of code representation.

Most of the introduced systems in Sect. 2 are limited to x86 systems. A more
versatile approach is desirable, which is not dependent on an a-priori knowledge
of the architecture of the target system. The requirement versatility means that
the disassembler works reliably for different target architectures.

4 Background and Fundamentals

In this section we introduce the basic fundamentals of our approach for the intro-
duction of approxis. We briefly introduce the target x86 system. Afterwards,
we introduce the set of ground truth assembly files in a detailed way.

4.1 Disassembling

We first give a short introduction to the x86 encoding scheme and the fundamen-
tals of disassembling. Disassemblers are used to transform machine code into a
human readable representation. In the field of binary analysis and reverse engi-
neering the demands and requirements of a disassembler engine are clearly iden-
tified. With the x86 instruction set these tools have to deal with variable-length
and unaligned instruction encodings. Additional, executables sections could be
interleaved by code and data sequences. As the authors of [9] already described,
this system design trades simplicity for brevity and speed. Summarized, the
process of disassembly in general is undecidable [1,9]. As could be seen in Fig. 1
the x86 instructions are defined by sequences of mandatory and non-mandatory
bytes. The Reg field of the ModR/M byte is sometimes used as an additional opcode
extension field. Prefix bytes could additionally change the overall instruction
length. For further details we refer to the Intel Instruction manual'.

! https://software.intel.com/en-us/articles/intel-sdm.


https://software.intel.com/en-us/articles/intel-sdm

Approxis: Approximate Disassembly 163

Mod Reg R/M Scale Index Base

Bits: 76 543 210 76 543 210
Prefix Opcode ModR/M SIB Displacement Immediate
Bytes: 0-4 1-3 0-1 0-1 0,1,2,4,8 0,1,2,4,8

Fig. 1. x86 machine instruction format

The core of this research is to approximate disassemble a vast amount of
unknown data. This desire clearly stays in conflict with the goal of classical dis-
assembler engines, where computational performance is often understood as a
secondary goal. We ignore recursive traversal, as this would implicate an imprac-
tical layer of computational overhead. The development and the maintenance
process of disassemblers is somewhat cumbersome and tedious. Even the lookup
tables of a simple length-disassembler have to be maintained.

4.2 Mnemonic Frequency Analysis

We analyzed the opcode and mnemonic distribution of a set of ELF binaries,
namely a dataset containing 521 different binaries obtained by [1]. As we focus
on the acquisition of byte sequences which rely to code only, we extracted the
.text section of each binary file. It should be mentioned that the following dis-
tribution analysis is nothing new [2,7]. However, existing distribution analysis of
mnemonics often rely on malware, which could be biased. We used the ground
truth of assemblies to determine the distribution of mnemonics and extracted
the bigrams of mnemonics (see Table 1). We splitted the set of assemblies by its
architecture and determined the total amount of unigrams and bigrams. The col-
umn of distinct values describes the set of all occurring mnemonics. The columns
max, mean and min describe the assignment of the total amount of instructions
to each distinct unigram or bigram. For example, the most frequently occurred
mnemonic in the case of 32bit binaries represents 33.25% of all instructions.

Table 1. Overview of unigram and bigram mnemonic counts.

32bit (200 files) 64 bit (321 files)

Total | Distinct | Max Mean | Total | Distinct | Max Mean
Unigrams |35.232k | 322 |11.714k|1531 |61.441k| 436 |21.627k|1859
Bigrams |35.232k | 11632 5.889k| 17 |61.441k|16059 10.360k| 28

The frequency of occurrence of all bigrams are extracted, the probability p of
each bigram is saved as logarithmic odds (logit). We further denote the absolute
values of logits as A (see Eq.1). Similar to [7] we want to avoid computational
underflow by multiplication of probabilities.

A=|ln

| 1)

1—p



164 L. Liebler and H. Baier

4.3 Byte Tree Analysis

The former subsection revisits the frequencies of most frequently occurred
mnemonics. In a next step we analyze the byte frequencies on a instruction
base. We have to deal with a vast amount of overlapping byte sequences and
non-relevant operand information. To refine our demands, the overall goal of
approxis is not do establish a high-accuracy disassembler, but to identify
instruction offsets and a predominant mnemonic. We extract all bytes of an
instruction and insert them in a database structured as tree. Each node of the
tree represents a byte and stores a reference to all its corresponding children,
the subsequent instruction bytes (see Fig. 2).

Input instructions:

push 41 55
push 41 55
mov 48 89 f3
sub 48 81 ec
lea 48 8d
mov 64 48 8b

48

lea sub

64
mov

a1
push

mov

Fig. 2. Oversimplified bytetree example after inserting several instructions.

As an example we inspect the byte sequence 488d and its subsequent bytes
after inserting our ground truth into the tree. In listing 1 we can see the com-
plete output of a single node. We should mention that the amount of the child
nodes was shortened for a better representation @. We also save auxiliary infor-
mation like the amount of counted bytes for a current node @, the counts of all
corresponding mnemonics @® and the counts of different occurring instruction
lengths ®@®. Each node maintains different formats and could possibly lead to
redundant information. This structure represents an intermediate state needed
for the following steps of data analysis, post processing and tree reduction.

Listing 1: Inspecting a node of lea (48 8d) instruction

Current node: [’48,8d’]; Count: 1334022 @

Child nodes: [83,aa,04,87,2d,8b,0c¢,8f,93, ... ,69,7d,6d,71,75,48] &

{ 3:669k, 2:11k, 4:273k, 7:207k, 6:172k}

{ 2:{lea:11k}, 3:{lea:669k}, 4:{lea:273k}, 6:{lea:172k}, 7:{lea:207k}} ®
([3, 669k], [4, 273k], [7, 207k], [6, 172k], [2, 11k]] @

(lea’, 1334k) ©

DU W

After inserting the whole ground truth into the tree we perform an additional
step of reduction. Every node which represents a single length and a single
mnemonic was transformed to a leaf node. So we cropped all subsequent child
nodes of the current node, which doesn’t affect the instruction mnemonic. The
reduced shape of the tree is highlighted black in Fig. 2. The impact of reduction
could be seen in Table 2.



Approxis: Approximate Disassembly 165

Table 2. Comparison of original and reduced bytetree.

Platform | Input bytes | Original tree Reduced tree

Nodes Height | Size | Nodes | Height | Size
64 bit 253.535.572 | 12.773.078 | 15 445M | 87.224 | 10 7.5M
32 bit 123.221.439 | 5.871.232 15 206M | 35.211 | 9 3.0M

5 Approach

The observation of the preceding section lead the deduction of our approach,
which is based on the introduced bytetree and mnemonic frequency analysis.

5.1 Disassembling

We argue that length-disassemblers could be assumed to be very fast and
lightweight. Though, even a simple length-disassembler needs to respect a lot
of basic operations and needs to be maintained for different target architectures.
The disassembler library distorm? is based on a trie structure and conceptional
similar to our approach. It outperforms other disassemblers with its instruction
lookup complexity of O(1). However, the engine still respects instruction sets on
a bit granularity and performs a detailed decoding. As we trade computational
speed more important than accuracy, approxis will stay on a byte granular-
ity level. We consult the previously gained learnings of the mnemonic analysis
to improve our process of length disassembling. It should be clear and fair to
mention that existing disassemblers aren’t designed for our field of application.
Processing a large amount of raw data is out of the scope of classical disas-
semblers. As existing length-disassembler engines reduce the amount of needed
decoding mechanisms to a minimum, we introduce an approach to resolve a
corresponding mnemonic without respecting any provided opcode maps. Hence,
comparing the computational speed of approxis with other disassemblers seems
less meaningful.

Bytetree Disassembling. To address the introduced requirement lightweight
(see Sect.3), approxis does not depend on the integration of a specific disas-
sembler engine. The process of disassembling is mainly realized with the already
introduced bytetree. We implemented our first prototype of approxis in the
language C and used a reduced bytetree to generate cascades of switch state-
ments. These statements are used to sequentially process the input instructions
and to perform the translation into a corresponding length and mnemonic. The
information of the bytetree nodes have been reduced to a minimum core. We
only store the amount of counted visited bytes per node and the lengths. Nodes
with more than one mnemonic are reduced to a single representative, which is
the predominant and most counted mnemonic of the specific node.

2 https://github.com/gdabah /distorm.


https://github.com/gdabah/distorm

166 L. Liebler and H. Baier

The performance of the bytetree was evaluated by a set of 1318 64 bit bina-
ries. The disassemblies obtained by the bytetree have been compared to the
disassemblies obtained by objdump. Determining the correct offsets is impor-
tant to build a solid foundation for further normalization. Thus, it is important
to measure the amount of correctly disassembled instruction offsets compared
to the set of true instruction offsets. We disassembled all binaries of an Ubuntu
LTS 16.04 x86_6/4 and extracted the .text sections. The determined instruction
offsets by objdump build our ground truth of relevant offsets 6,;. We measured
the performance of our bytetree disassembler by verifying all retrieved offsets
0, against our set of relevant offsets. An overview of fairly good performance is
shown in Table 3 (row bt-dis). We denote the performance in values of precision
and recall, where

{01} N {0re}]  and [{0r1} 0 {0re}|

precision = recall =
{0} {601}
Table 3. Precision and recall of approxis.
Approach | Precision Recall

Max | Min Mean (geo./ari.) Max | Min Mean (geo./ari.)
bt-dis | 100% |84.40% | 99.50% 99.51% |100% | 92.40%  99.80% | 99.80%
bta-dis |100%|91.49% |99.76% | 99.76% |100%  93.62% | 99.84% | 99.84%

We examined the binary with the lowest precision (i.e., 84.40%), namely
xvminitoppm, which converts a XV thumbnail picture to PPM. Extracting a bunch
of false positives underlines our assumption: even with a reliable vast amount
of ground truth files, the integration of all instructions is impossible. In case of
xvminitoppm a lot of overlong Multi Media Extension (MMX) instructions are
implemented, which are not present in the bytetree.

Assisted Length Disassembling. Disassembling a unknown binary, with
unknown instruction bytes could lead to ambiguous decision paths within the
bytetree. Namely, an unknown sequence of input bytes would lead to an exit
of the tree structure at a non-leaf node, with multiple remaining lengths and
mnemonics. An example in Fig.3 could not be clearly disassembled with the
tree from Fig.2. To detect those outliers and to extend approxis with other
features, we integrate our results from Sect. 4. In detail, we use the logarithmic
odds of mnemonic bigrams to assist the process of disassembling and to identify
reasonable instruction lengths, which could not be resolved by the bytetree itself.
As the authors of [7] proposed a disassembler based on a set of logarithmic odds
only, we argue that the descent performance of this approach is not sufficient.
As the process of bytetree based disassembling is straightforward, the inte-
gration of the absolute logit value A has not yet been described. We consider



Approxis: Approximate Disassembly 167

A as a value of confidence if two disassembled and subsequent instructions are
plausible or not. So it is more likely that a sequence of instructions is in fact
meaningful as long as A remains small. In contrast, a high value of X\ illustrates
two subsequent instructions, which are not common at all. We limit the range of
the absolute logit A, where 0 < A < 100. This value of confidence could be used
differently to cope with the goals and requirements in Sect.3. We first focus on
assisting our process of disassembling by resolving plausible instruction lengths.
Summarized, we use A to determine the most plausible offset of a byte sequence,
which is not known by our bytetree. The following steps describe the process of
assisted disassembling in detail:

1. We use a table of confidence values \; to evaluate the transition between
two instruction sequences denoted by its mnemonic. If a lookup of a subse-
quent mnemonic pair fails, the action gets penalized with an exorbitant high
value. Every retrieved A; has to be under a selected threshold 7. We repeat
the disassembling with all stored length values of a current node until an
offset fulfills the threshold. If none of the length values returns a A; under the
threshold 7, we select the most common length of the current node.

2. All byte sequences with an unknown byte at offset zero, i.e. a byte which is
not present in the first level of the bytetree, are penalized by the system. As
bytes, which are not present on the first level of the bytetree after processing
a fairly large amount of ground truth files, are expected to be not common.

3. A simple running length counter keeps track of subsequently repeating
confidence values, as these indicate a significant lack of variance, often occur-
ring in large fragments of zero byte sequences or random padding sequences.
These non-relevant byte sequences are additionally penalized.

Figure 3 illustrates the process of offset determination. We repeated the pro-
cess of disassembling the set of 1318 64 bit ELF binaries with assisted length-
disassembling. The obtained results in Table 3 (row bta-dis) show a significant
improvement in the case of precision.

"+1_3 7,+Z_5 )‘i+3:4
—
i;\;"‘ 0 ff |48 89| 0 ’48 B <o ||
~_ 7
Niv3 = 17

Fig. 3. Selecting certain offsets with a predefined threshold 7 = 16.

5.2 Code and Architecture Detection

Beside supporting the process of determining unknown instruction offsets during
disassembling, we use the value of confidence to realize two goals: detect code
sequences in data and discriminate the architecture of code.



168 L. Liebler and H. Baier

Code Detection. The current implementation of approxis could differ
between code and non-code fragments in unknown sequences of bytes. As shown
in the previous subsection, the value of confidence A; is determined for two
subsequent instructions to enhance the disassembling process. We use a sliding
window approach to consider those values over sequences of subsequent instruc-
tions. More formally, we define a windowed confidence value w, in Eq.2 as the
average of all \; within a sliding window, with a predefined size n at offset x.
Penalized values overwrite a local value \; and thus influence w,,. The value of w
should be interpreted as a value of confidence over time. A rising value w under-
lines the presence of large data fragments. A short rising peak of X indicates the
presence of short and interleaved data. A mid-ranged value of w indicates the
loose presence of instructions or the presence of non-common instructions.
DYDY

Wy = == (2)
Architecture Detection. We created a bytetree and a lookup table of A; for
each architecture of our ground truth. Thus, switching the mode of operation
could be realized by simply changing the references of the used bytetree and
lookup-table. Mid-ranged values of w could indicate uncommon sequences of
instructions, which we will show later. Large sections of mid-range w values could
also indicate the presence of alternative architectures. We will demonstrate that
these variances are significant for different architectures. Sections of code are
normally within a range from 1 (high confidence) to 17 (low confidence).

6 Assessment and Experimental Results

In this section we evaluate approxis in different fields of application. These
assessments focus on the detection of code in different areas of application.

Code Detection: The following evaluation addresses our defined requirement
of robustness (see Sect.3). To evaluate the code detection performance in the
field of binary analysis, we first examined a randomly selected ELF binary. The
result in Fig. 4 illustrates the capabilities of approxis to differentiate code from
data. Figure 4a shows the initial reduction of confidence by the header. Figure 4b
shows that the .text section is clearly distinguishable and introduced by the
.plt section, which is not filled with common sequences of instructions.

2
10 a) ~ P b) —— wj
10t .

o "—
109 10 102 10% 10* 10° 04 0.6 0.8 1 1.2
offset (bytes) .text .data .plt .text -10*

Fig. 4. approxis applied on zip (64 bit); value of w; with cutoff set to 100;



Approxis: Approximate Disassembly 169

We extracted from a set of 792 ELF binaries the file offsets of different sections
with the help of objdump. The offsets 6 of the sections .plt, .text and .data
define points of transition between code and data in each file. To evaluate the
code detection performance we inspected the average local value of confidence
\; for k preceding and x subsequent instructions at an offset 6. A transition 7y
from code to data or 7. from data to code at offset 6 is recognized by approxis,
if the average local confidence differs by a threshold § (see formula 3). In the case
of transitions between .plt and .text we lowered the threshold from § = 30 to
0 = 5. The ratio of all correctly registered transitions is shown in Table 4.

0 O+k
SNV 3 sy DV
1, if Z'L:Q—n _ i=0 )\L )

0, otherwise

Table 4. Ratio of correctly detected transitions.

Arch | # files | # transition | Detected
x86-64 | 400 1200 99 %
x86 392 1176 92 %

Architecture Detection. The following evaluation addresses our defined
requirement of versatility (see Sect.3). To illustrate the detection process of
approxis for code fragments of different types, an image with random bytes
was generated. Within the random byte sequences we inserted several non-
overlapping binaries at predefined offsets. In detail, we inserted a 32 bit (i.e., ELF
64-bit LSB, dynam. linked, stripped) and a 64 bit (i.e., ELF 32-bit LSB, dynam.
linked, stripped) version of four different binaries: wget, curl, info and cut. As
introduced in Sect.5, approxis currently relies on two different bytetrees and
mnemonic lookup-tables. By applying both versions on our pathological image,
we visualize the changing values of confidence (see Fig. 5a, b).

Similar to the analysis of data and code transitions, we examined the archi-
tecture discrimination with the help of 400 randomly selected ELF binaries for
each architecture. We extracted the .text section of each binary and disassem-
bled them with approxis in 64 bit and 32 bit mode. We determined the average
of all w, for the whole .text section of each binary, denoted as @. The distribu-
tion of @ for each binary is illustrated in Fig.6 and outlines the capabilities of
approxis to discriminate a present architecture.

Computational Performance. The following evaluation addresses our defined
requirement of speed (see Sect.3). The execution time of approxis was tested
on a machine with an Intel(R) Core(TM) i5-3570K CPU @ 3.40 GHz with 16
GiB DDR3 RAM (1333 MHz) and 6 MiB L3 cache. The implementation was done
in C and compiled with optimization set to -03. As we focus on a possible



170 L. Liebler and H. Baier

approxis-64 Wa

Fig. 5. Comparison of code detection for x86 and x86-64 binaries.

| | | | | | | |
300 | [ 4 32bit binaries || | L4 64bit binaries ||
[ # 64bit binaries || [l # 32bit binaries |

200 |- B |
100 4 L i
0 pomamiftlitios o T T 1 w T
0 20 40 60 80 0 10 20 30
w of approxis-32 @ of approxis-64

Fig. 6. Architecture detection of approxis with a selected bin size of one.

integration in existing approximate matching techniques, we only measured the
computation time of the disassembling process and ignored the loading process
to memory. It should be mentioned that the current prototype doesn’t focus on
performance optimization or parallelization. We created three images with a size
of 2 GiB each to evaluate the runtime performance. As we already mentioned
in Sect. 5.1, the comparison of approxis with other disassemblers is somewhat
misleading. As approxis outreaches the capabilities of length-disassemblers, but
is not able to completely decode x86 instructions, the comparison of those disas-
semblers should not be understood as a comparison of competing approaches. We
applied each disassembler in different modes and optimized our implementation
of the distorm engine by removing unnecessary printouts and buffers. Table5
outlines that the execution time of approxis relies on the processed input.

Table 5. Execution time of approxis and distorm with different input data.

Execution time Description

Approxis Distorm Disassembler

32 64 32 64 Mode

29.084 s 21.936s 1m 20.770s|1m 7.772s |Concatenated set of 64 bit binaries from /usr/bin
27.859s 31.918s 1m 43.999s|1 m 43.046 s Raw memory dump acquired with LiME®

1m 15.521s|1m 44.990s|1m 58.278s|1m 56.192s|Random sequences of bytes generated with /dev/urandom

“https://github.com/504ensicslabs/lime


https://github.com/504ensicslabs/lime

Approxis: Approximate Disassembly 171

7 Conclusion

In this paper, we demonstrated a first approach to detect, discriminate and
approximate disassemble code fragments within vast amount of data. In contrast
to previous work, approxis revisits the analysis of raw memory with less pre-
requisites and dependencies. Our approach is a first step to fill the gap between
state of the art high level memory examination (e.g., by the usage of volatility)
and methods of data reduction similar to those in disk forensics. Our results
show the capabilities of approxis to differentiate between code and data during
the process of disassembling. By maintaining a value of confidence throughout
the process of disassembling, we can reliably distinguish between different archi-
tectures and switch the used bytetree to obtain a better degree of accuracy. The
current implementation shows also a good computational speed.

A next step should be the extraction of features, which are used in a context of
approximate matching. Possible methods of subversion (e.g. anti-disassembling)
should be considered. A process of exact and inexact matching of code is eligible
to consider metamorphic structures and to damp variances in detected code.
The approach could be transferred to other domains (e.g. embedded systems).

Acknowledgement. This work was supported by the German Federal Ministry of
Education and Research (BMBF) as well as by the Hessen State Ministry for Higher
Education, Research and the Arts (HMWK) within CRISP (crisp-da.de).

References

1. Andriesse, D., Chen, X., van der Veen, V., Slowinska, A., Bos, H.: An in-depth
analysis of disassembly on full-scale x86/x64 binaries. In: USENIX Security Sym-
posium (2016)

2. Bilar, D.: Statistical structures: fingerprinting malware for classification and anal-
ysis. In: Proceedings of Black Hat Federal 2006 (2006)

3. Breitinger, F., Baier, H.: Similarity preserving hashing: eligible properties and a
new algorithm MRSH-v2. In: Rogers, M., Seigfried-Spellar, K.C. (eds.) ICDF2C
2012. LNICST, vol. 114, pp. 167-182. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-39891-9_11

4. Dolan-Gavitt, B.: The VAD tree: a process-eye view of physical memory. Digit.
Invest. 4, 62-64 (2007)

5. Gupta, V., Breitinger, F.: How cuckoo filter can improve existing approximate
matching techniques. In: James, J.1., Breitinger, F. (eds.) ICDF2C 2015. LNICST,
vol. 157, pp. 39-52. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
25512-5_4

6. Roussev, V., Richard, G.G., Marziale, L.: Multi-resolution similarity hashing.
Digit. Invest. 4, 105-113 (2007)

7. Radhakrishnan, D.: Approximate disassembly. Master’s Projects. 155 (2010).
http://scholarworks.sjsu.edu/etd_projects/155/

8. Walters, A., Matheny, B., White, D.: Using hashing to improve volatile memory
forensic analysis. In: American Acadaemy of Forensic Sciences Annual Meeting
(2008)


https://doi.org/10.1007/978-3-642-39891-9_11
https://doi.org/10.1007/978-3-642-39891-9_11
https://doi.org/10.1007/978-3-319-25512-5_4
https://doi.org/10.1007/978-3-319-25512-5_4
http://scholarworks.sjsu.edu/etd_projects/155/

172 L. Liebler and H. Baier

9. Wartell, R., Zhou, Y., Hamlen, K.W., Kantarcioglu, M., Thuraisingham, B.: Differ-
entiating code from data in x86 binaries. In: Gunopulos, D., Hofmann, T., Malerba,
D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6913, pp. 522—
536. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23808-6_34
10. White, A., Schatz, B., Foo, E.: Integrity verification of user space code. Digit.
Invest. 10, S59-S68 (2013)


https://doi.org/10.1007/978-3-642-23808-6_34

	Approxis: A Fast, Robust, Lightweight and Approximate Disassembler Considered in the Field of Memory Forensics
	1 Introduction
	2 Related Work
	3 Requirements of Approximate Disassembling
	4 Background and Fundamentals
	4.1 Disassembling
	4.2 Mnemonic Frequency Analysis
	4.3 Byte Tree Analysis

	5 Approach
	5.1 Disassembling
	5.2 Code and Architecture Detection

	6 Assessment and Experimental Results
	7 Conclusion
	References


