
Expediting MRSH-v2 Approximate Matching
with Hierarchical Bloom Filter Trees

David Lillis1(B), Frank Breitinger2, and Mark Scanlon1

1 Forensics and Security Research Group, School of Computer Science,
University College Dublin, Dublin, Ireland
{david.lillis,mark.scanlon}@ucd.ie

2 Cyber Forensics Research and Education Group,
Tagliatela College of Engineering, ECECS,

University of New Haven, West Haven, CT, USA
fbreitinger@newhaven.edu

Abstract. Perhaps the most common task encountered by digital foren-
sic investigators consists of searching through a seized device for perti-
nent data. Frequently, an investigator will be in possession of a collection
of “known-illegal” files (e.g. a collection of child pornographic images)
and will seek to find whether copies of these are stored on the seized drive.
Traditional hash matching techniques can efficiently find files that pre-
cisely match. However, these will fail in the case of merged files, embed-
ded files, partial files, or if a file has been changed in any way.

In recent years, approximate matching algorithms have shown signifi-
cant promise in the detection of files that have a high bytewise similarity.
This paper focuses on MRSH-v2. A number of experiments were conducted
using Hierarchical Bloom Filter Trees to dramatically reduce the quantity
of pairwise comparisons that must be made between known-illegal files
and files on the seized disk. The experiments demonstrate substantial
speed gains over the original MRSH-v2, while maintaining effectiveness.

Keywords: Approximate matching · Hierarchical bloom filter trees ·
MRSH-v2

1 Introduction

Current digital forensic process models are surprisingly arduous, inefficient, and
expensive. Coupled with the sheer volume of digital forensic investigations facing
law enforcement agencies worldwide, this has resulted in significant evidence
backlogs becoming commonplace [22], frequently reaching 18–24 months [9] and
exceeding 4 years in extreme cases [14]. The backlogs have grown due to a number
of factors including the volume of cases requiring analysis, the number of devices
per case, the volume of data on each device, and the limited availability of
skilled experts [16]. Automated techniques are in continuous development to aid
investigators, but due to the sensitive nature of this work, the ultimate inferences
and decisions will always be made by skilled human experts [12].
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

P. Matoušek and M. Schmiedecker (Eds.): ICDF2C 2017, LNICST 216, pp. 144–157, 2018.

https://doi.org/10.1007/978-3-319-73697-6_11



Expediting MRSH-v2 Approximate Matching 145

Perhaps the most common (and most time-consuming) task facing digital
investigators involves examination of seized suspect devices to determine if per-
tinent evidence is contained therein. Often, this examination requires significant
manual, expert data processing and analysis during the acquisition and analysis
phases of an investigation. A number of techniques have been created or are
in development to expedite/automate parts of the typical digital forensic pro-
cess. These include triage [17], distributed processing [20], Digital Forensics as a
Service (DFaaS) [1], workflow management and automation [3,10]. While these
techniques can help to alleviate the backlog, the premise behind many of them
involves evidence discovery based on exact matching of hash values (e.g., MD5,
SHA1). Typically, this requires a set of hashes of known incriminating/pertinent
content. The hash of each artefact from a suspect device is then compared against
this set. This approach falls short against basic counter-forensic techniques (e.g.,
content editing, content embedding, data transformation).

Approximate matching (often referred to as “fuzzy hashing”) is one technique
used to aid in the discovery of these obfuscated files [6]. A number of approximate
matching algorithms have been developed including ssdeep [13], sdhash [18],
and MRSH-v2 [4]. This paper focuses specifically on MRSH-v2. This algorithm
operates by generating a “similarity digest” for each file, represented as Bloom
filters [2]. An all-against-all pairwise comparison is then required to determine
if files from a set of desired content is present in a corpus of unanalysed content.
Thus, MRSH-v2 does not exhibit strong scalability for use with larger datasets.

This paper presents an improvement in the runtime efficiency of approxi-
mate matching techniques, primarily through the implementation of a Hierar-
chical Bloom Filter Tree (HBFT). Additionally, it examines some of the tunable
parameters of the algorithm to gauge their effect on the required running time.
A number of experiments were conducted, which indicated a substantial reduc-
tion in the running time, in addition to which the final experiment achieved a
100% recall rate for identical files and also for files that have a MRSH-v2 similarity
above a reasonable threshold of 40%.

Section 2 outlines the prior work that has been conducted in the area of
approximate matching. The operation of MRSH-v2 is discussed in Sect. 3. HBFTs
are introduced in Sect. 4. Section 5 presents the series of experiments designed to
evaluate the effectiveness of the HBFT approach, and finally Sect. 6 concludes
the paper and outlines directions for further work.

2 Background: Approximate Matching

Bytewise approximate matching for digital forensics gained popularity in 2006
when [13] presented context-triggered piecewise hashing (CTPH) including an
implementation called ssdeep. It was at that time referred to as “fuzzy hashing”.
Later, this term converted to “similarity hashing” (most likely due to sdhash
which stands for “similarity digest hash” [18]). In 2014, the National Institute of
Standards and Technology (NIST) developed Special Publication 800-168, which
outlines the definition and technology for these kinds of algorithms [6].



146 D. Lillis et al.

In addition to the prominent aforementioned implementations, there are sev-
eral others. MinHash [8] and SimHash [21] are ideas on how to detect/identify
small changes (up to several bytes), but were not designed to compare hard disk
images with each other. In 2014, Oliver presented an algorithm named TLSH,
which is premised on locality sensitivity hashing (LSH) [15]. There are signifi-
cantly more algorithms, but to explain all of them would be beyond the scope
of this paper; a good summary is provided by Harichandran et al. [11].

While these algorithms have great capabilities, they suffer one significant
drawback, which we call the “database lookup problem”. In comparison to tra-
ditional hash values which can be sorted and have a lookup complexity of O(1)
(hashmap) or O(log(n)) (binary tree; where n is the number of entries in the
database), looking up a similarity digest usually requires an all-against-all com-
parison (O(n2)) to identify all matches. To overcome this drawback, Breitinger
et al. [5] presented a new idea that overcomes the lookup complexity (it is approx-
imately O(1)) but at the cost of inaccuracy. More specifically, the method allows
item vs. set queries, resulting in the answer either being “yes, the queried item
is in the set” or “no, it is not”; one cannot say against which item it matches.

As a means of addressing these drawbacks, Breitinger et al. [7] presented a
further article where they offered a theoretical solution to the lookup problem,
based on a tree of Bloom filters. However, an implementation (and thus a valida-
tion) has not been conducted to date. We refer to this as a Hierarchical Bloom
Filter Tree (HBFT). The focus of the present work is the empirical evaluation
of this approach, so as to demonstrate its effectiveness and to investigate some
practical factors that affect its performance.

3 The MRSH-v2 Algorithm

The work in this paper is intended to improve upon the performance of the
MRSH-v2 algorithm. Therefore, it is important to firstly outline its operation
in informal terms, which will aid the discussion later. A more detailed, formal
description of the algorithm can be found in [4]. The primary goal of MRSH-v2 is
to compress any byte sequence and output a similarity digest. Similarity digests
are created in a way that they can be compared with each other, which will result
in a similarity score. Each similarity digest is a collection of Bloom filters [2].

To create the similarity digest, MRSH-v2 splits an input into chunks (also
known as “subhashes”) of approximately 160 bytes. These chunks are hashed
using FNV (a fast non-cryptographic hash function), which is used to set 5 bits
of the Bloom filter. To divide the input into chunks, it uses a window of 7 bytes,
which slides through the input byte-by-byte. The content of the window is pro-
cessed and whenever it hits a certain value (based on a modulus operation),
the end of a chunk is identified. Thus, the actual size of each chunk varies.
Each Bloom filter has a specific capacity. Once this has been reached, any
further chunks are inserted into a new Bloom filter that is appended to the
digest. Approximate matching occurs by comparing similarity digests against
one another. To compare two file sets, an all-against-all pairwise comparison is
required.



Expediting MRSH-v2 Approximate Matching 147

Extending the file-against-set comparison outlined in [5], an alternative
strategy to combat this is to use a hierarchical Bloom filter tree (HBFT) [7].
It is intended to achieve speed benefits over a pairwise comparison while sup-
porting the identification of specific matching files. The primary contribution of
this paper is to investigate the factors that affect the runtime performance of
this approach, compared to the classic pairwise approach.

4 Hierarchical Bloom Filter Trees (HBFT)

In a Hierarchical Bloom Filter Tree (HBFT), the root node of the tree is a Bloom
filter that represents the entire collection. When searching for a file, if a match
is found at the root of the tree, its child nodes can then be searched. Although
this structure is inspired by a classic binary search tree, a match at a particular
node in a HBFT does not indicate whether the search should continue in the left
or right subtree. Instead, both child nodes need to be searched, with the search
path ending when a leaf node is reached or a node does not match.

Fig. 1. Hierarchical Bloom Filter Tree (HBFT) structure.

The tree layout is shown in Fig. 1. Each level in the tree is allocated an
equal amount of memory. Thus each Bloom filter occupies half the memory of
its parent, and also represents a file set that is half the size of its parent. The
expected false positive rates will be approximately equal at all levels in the tree.

When a collection is being modelled as a HBFT, each file is inserted into the
Bloom filter at some leaf node in the tree, and also into its ancestor nodes. The
mechanism of inserting a file into a Bloom filter is the same as for the single
Bloom filter approach from [5], which is also very similar to the approach taken
by the classic MRSH-v2 algorithm outlined in Sect. 3. The key difference is that
instead of creating a similarity digest of potentially multiple small Bloom filters
for an individual file, each subhash is used to set 5 bits of the larger Bloom filter
within a tree node that usually relates to multiple files.

Depending on the design of the tree, a leaf node may represent multiple files.
Thus a search that reaches a leaf node will still require a pairwise comparison
with each file in this subset, using MRSH-v2. However, given that most searches



148 D. Lillis et al.

will reach only a subset of the root nodes, the number of pairwise comparisons
required for each file is greatly reduced.

The process to check if a file matches a Bloom filter node is similar to the
process of inserting a file into the tree. However, instead of inserting each hash
into the node, its subhashes are instead checked against the Bloom filter to see if
they are contained in it. If a specific number of consecutive hashes are contained
in the node, this is considered to be a match. The number of consecutive hashes
is configurable as a parameter named min run. The first experiment in this paper
(discussed in Sect. 5.2) explores the effects of altering this value.

In the construction of a HBFT, memory constraints will have a strong influ-
ence on the design of the tree. In practical situations, a typical workstation is
unlikely (at present) to have access to over 16 GiB of main memory. Thus trade-
offs in the design of the tree are likely. Larger Bloom filters have lower false
positive rates (assuming the quantity of data is constant), but lead to shallower
trees (thus potentially increasing the number of pairwise comparisons required).

5 Experiments

As part of this work, a number of experiments were conducted to examine the
factors that affect the performance of the HBFT structure. In each case, a HBFT
was used to model the contents of a dataset. Files from another dataset were then
searched for in the tree, and the results reported. Because the speed of execution
is of paramount importance, and because the original MRSH-v2 implementation
was written in C, the HBFT implementation used for these experiments was also
written in that language. The source code has been made available (at http://
github.com/ishnid/mrsh-hbft) under the Apache 2.0 licence.

The workstation used for the experiments contains a quad-core Intel Core
i7 2.67 GHz processor, 12 GiB of RAM and uses a solid state drive for storage.
The operating system is Ubuntu Linux 16.04 LTS. The primary constraint this
system imposes on the design of experiments is that of the memory that is
available for storing the HBFTs. For all experiments, the maximum amount of
memory made available for the HBFT was 10 GiB. The size of the individual
Bloom filters within the trees then depended on the number of nodes in the tree
(which in turn depends on the number of leaf nodes).

For each experiment, the number of leaf nodes (n) is specified in advance,
from which the total number of nodes can be computed (since this is a binary
tree). Given the upper total memory limit (u, in bytes), and that the size of
each Bloom filter should be a power of two (per [5]), it is possible to calculate
the maximum possible size of each Bloom filter. Because all levels in the tree are
allocated the same amount of memory, the size of the root Bloom filter in bytes
(r) is given by:

r = 2�log2(u/(log2(n)+1))� (1)

The size of the other nodes in bytes is then r
2d

where d is the depth of the
node in the tree (i.e. the size of a Bloom filter is half the size of its parent).

http://github.com/ishnid/mrsh-hbft
http://github.com/ishnid/mrsh-hbft


Expediting MRSH-v2 Approximate Matching 149

The ultimate goal of the experiments is to demonstrate that the HBFT app-
roach can improve the running time of an investigation over the all-against-all
comparison approach of MRSH-v2 without suffering a degradation in effective-
ness. It achieves this by narrowing the search space so that each file that is
searched for need only be compared against a subset of the dataset.

Using a HBFT, the final outcome will be a set of similarity scores. This score
is calculated by using MRSH-v2 to compare the search file with all files contained
in any leaves that are reached during the search. Therefore, the HBFT approach
will not identify a file as being similar if MRSH-v2 does not also do so.

In these experiments, the similarity scores generated by MRSH-v2 are consid-
ered to be ground truth. Evaluating the degree to which this agrees with the
opinion of a human judge, or how it compares with other algorithms, is outside
the scope of this paper. The primary difference between the outputs is that the
HBFT may fail to identify files that MRSH-v2 considers to be similar (i.e. false
negatives) due to an appropriate leaf node not being reached.

Therefore the primary metric used, aside from running time, is recall: the
proportion of known-similar (or known-identical) files for which the HBFT search
reaches the appropriate leaf node.

5.1 Datasets

Two datasets were used as the basis for the experiments conducted in this paper:

– The t5 dataset [19] is frequently used for approximate matching experimen-
tation. It consists of 4,457 files (approximately 1.8 GiB) taken from US gov-
ernment websites. It includes plain text files, HTML pages, PDFs, Microsoft
Office documents and image files.

– The win7 dataset is a fresh installation of a Windows 7 operating system,
with default options selected during installation. It consists of 48,384 files
(excluding symbolic links and zero-byte files) and occupies approximately
10 GiB.

The first two experiments use one or both of these datasets directly. The final
experiment includes some modifications, as outlined in Sect. 5.2.

5.2 Experiment Overview

The following sections present three experiments that were conducted to evaluate
the HBFT approach. Section 5.2 compares the t5 dataset with itself. This is
intended to find whether the HBFT approach is effective in finding identical files,
and to investigate the effect of varying certain parameters when designing and
searching a HBFT. It also aims to demonstrate the extent to which the number
of pairwise comparisons required can be reduced by using this technique.

Section 5.2 uses disjoint corpora of different sizes (t5 and win7). In a typical
investigation, there may be a large difference between the size of the collection of
search files and a seized hard disk. This experiment aims to investigate whether
it is preferable to use the tree to model the smaller or the larger corpus.



150 D. Lillis et al.

Finally, Sect. 5.2 uses overlapping corpora where a number of files have been
planted on the disk image. These files are identical to, or similar to, files in the
search corpus. This experiment demonstrates that using a HBFT is substantially
faster than the pairwise approach.

Experiment 1: t5 vs. t5. For the initial experiment, the HBFT was con-
structed to represent the t5 corpus. All files from t5 were also used for searching.
Thus every file searched for is also located in the tree and should be found. Con-
ducting an all-against-all pairwise comparison using MRSH-v2 required a total of
19,864,849 comparisons, which took 319 s.

To construct the tree, the smallest number of leaf nodes was 32. Following
this, the number of leaf nodes was doubled each time (maintaining a balanced
tree). The exception was that 4,457 leaf nodes were used for the final run, thereby
representing a single file from the corpus in each leaf.

The aims of this experiment were:

1. Evaluate the effectiveness of the HBFT approach for exact matching (i.e.
finding identical files) using recall.

2. Identify an appropriate value for MRSH-v2’s min run parameter.
3. Investigate the relationship between the size of the tree and the time taken

to build and search the tree.
4. Investigate the relationship between the size of the tree and the number of

pairwise comparisons that are required to calculate a similarity score.

Table 1. Effect of min run on recall: identical files.

min run Recall

4 100%

6 99.96%

8 99.93%

When running the experiment, it became apparent that the first two aims
are linked. Table 1 shows the recall associated with three values of min run: 4,
6 and 8. Using a min run value of 4 resulted in full recall. However, increasing
min run to 6 or 8 resulted in a small number of files being omitted. When
min run is set to 8, three files are not found in the tree. This indicates the
dangers inherent in requiring longer matching runs. The files in question are
000462.text, 001774.html, 003225.html. These files are 6.5 KiB, 6.6 KiB and
4.5 KiB in size respectively. Although each chunk is approximately 160 bytes,
this changes depending on the file content. While these are relatively small files,
they are not the smallest in the corpus. This shows that even when the file is
large enough to contain 8 chunks of the average size, a min run requirement of



Expediting MRSH-v2 Approximate Matching 151

8 successive matches may still not be possible. Similarly, using 6 as the min run
value results in two files being missed.

It should be acknowledged that if the aim is solely to identify identical files,
then existing hash-based techniques will take less time and yield more reliable
results. Intuitively, however, a system that is intended to find similar files should
also find identical files. While the chunk size of 160 bytes will always fail to match
very small files, it is desirable to find matches when file sizes are larger.

Fig. 2. Effect of varying number of leaf nodes on time taken: t5 vs. t5

Figure 2 shows the time taken to build the tree and search for all files. As the
number of leaf nodes in the tree increases, so too does the time taken to search
the tree. Higher values of min run use slightly less time, due to the fact that it
is more difficult for a search to descend to a lower level when more matches are
required to do so. However, as the recall for these higher values is lower, 4 was
used as the min run value for further experiments.

The times shown here relate only to building the tree and searching for
files within it, and does not include the time for the pairwise comparisons at the
leaves. Therefore, although using 32 leaf nodes results in the shortest search time
(due to the shallower tree), it would require a most comparisons, as each leaf
node represents 1

32 of the entire corpus. As an illustration, using a tree with 32
leaf nodes and min run value of 4 requires 8,538,193 pairwise comparisons after
searching the tree. A similar tree with 4,457 leaves requires 617,860 comparisons.

One issue that is important to note is that the time required to perform a full
pairwise comparison is 319 s. However, for the largest trees, 274 s were required
to build and search the tree, before any comparisons were conducted. Thus, for
a relatively small collection such as this, the use of the tree is unlikely to provide
benefits in terms of time.

Figure 3 plots the number of leaf nodes against the total number of compar-
isons required to complete the investigation. As the size of corpora increases, so
does the number of pairwise comparisons required by MRSH-v2. Thus reducing



152 D. Lillis et al.

Fig. 3. Effect of varying number of leaf nodes on number of comparisons: t5 vs. t5

this search space is the primary function of the tree. Larger trees tend to result
in a smaller number of comparisons. For the largest tree (with 4,457 leaves), the
min run value does not have a material effect on the number of comparisons
required. This implies that although searches tend to reach deeper into the tree
(hence the longer running time), they do not reach substantially more leaves.

From this experiment, it can be concluded that using a min run value of 4
is desirable in order to find exact matches. This causes the time taken to search
to be slightly longer, while having a negligible impact on the number of pairwise
comparisons required afterwards.

Experiment 2: t5 vs. win7 and win7 vs. t5. The second experiment was
designed to operate with larger dataset sizes. t5 was used as a proxy for a set
of known-illegal files, and win7 was used to represent a seized disk.

The aims of this experiment were:

1. Investigate whether the HBFT should represent the smaller or larger corpus.
2. Measure the effect on overall running time of using a HBFT.

The experiment was first run by building a tree to represent t5 and then
searching for the files contained in win7. The number of leaf nodes in this tree
was varied in the same way as in Experiment 1. Then this was repeated by
inserting win7 into a tree and searching for the files from t5. Again the number
of leaf nodes was doubled every time, with the exception that the largest tree
contained one leaf node for every file in the collection (i.e. 48,384 leaves).

The time taken to build and search the trees are shown in Figs. 4 and 5.
Figure 4 shows the results when the tree represents t5, with the time subdivided
into the time spent building the tree and the time spent searching for all the
files from win7. The total time is relatively consistent for this type of tree. This
is unsurprising in the context of disjoint corpora. Most files will not match, so
many searches will end at the root node, or at an otherwise shallow depth.

Figure 5 shows results when the tree models win7. With only 32 leaf nodes,
both experimental runs take approximately the same total time. Due to its size,



Expediting MRSH-v2 Approximate Matching 153

Fig. 4. Time to search for win7 in a t5 tree.

Fig. 5. Time to search for t5 in a win7 tree.

the build time for the win7 tree is substantially longer than for t5. The search
time exhibits a generally upward trend as the number of leaf nodes increases.
This is because of the hardware constraints associated with the realistic setup.
Because memory footprint is constrained, a tree with 48,384 leaf nodes will
contain Bloom filters that are much smaller than for trees with fewer nodes. In
this experiment, leaves are 8 KiB in size, with a root node of 512 MiB.

Overall, the total time taken is less when the tree represents the smaller
dataset. Again, the total number of pairwise comparisons decreases as the num-
ber of leaves increases. Both approaches yield a similar quantity of necessary
comparisons for their largest tree (i.e. with the most leaf nodes). The tree mod-
elling t5 requires 98,260 comparisons whereas the one modelling win7 requires
101,386. This, combined with the lower build and search time suggests that
the preferred approach should be to use the smaller corpus to construct the



154 D. Lillis et al.

HBFT. Memory is an additional consideration. Using a HBFT to model the
larger dataset requires the similarity hashes of all its files to be cached at the
leaves. This requires a greater memory footprint than for the smaller collection,
thus reducing the amount of memory available to store the HBFT itself.

Following these observations, the experiment was repeated once more. The
tree modelled t5 with 4,457 leaves and win7 was searched for. The total running
time, including pairwise comparisons, was 1,094 s. In comparison, the time taken
to perform a full pairwise comparison using MRSH-v2 is 2,858 s.

Experiment 3: Planted Evidence. The final experiment involved overlapping
datasets, constructed as follows:

– A set of simulated “known-illegal” files: 4,000 files from t5.
– A simulated seized hard disk: the win7 image, plus 140 files from t5, as

follows:
– 100 files that are contained within the 4,000 “illegal” files.
– 40 files that themselves are not contained within the “illegal” files, but

that have a high similarity with files in the corpus, according to MRSH-v2.
10 of these files have a similarity of 80% or higher, 10 have a similarity
between 60% and 79% (inclusive), 10 have a similarity between 40% and
59% (inclusive) and 10 have a similarity between 20% and 39% (inclusive).

The aims of this third experiment were:

1. Evaluate the time taken to perform a full search, compared with MRSH-v2.
2. Evaluate the success of the approach in finding the 100 “illegal” files that are

included verbatim in the hard disk image, and the 40 files from the image
that are similar to “illegal” files, according to MRSH-v2.

For the first aim, the primary metric is the time taken for the entire process
to run, comprising the time to build the tree, the time to search the tree and the
time required to conduct the pairwise comparisons at the leaves. In evaluating
the latter aim, recall is used. Here, “recall” refers to the percentage of the 100
identical files that are successfully identified, and “similar recall” refers to the
percentage of the 40 similar files that are successfully found. A file is considered
to have been found if the search for the file it is similar or identical to reaches
the leaf node that contains it, yielding a pairwise comparison.

The total running time for MRSH-v2 was 2,592 s. The running times of the
HBFT approach are shown in Fig. 6. The smaller collection of 4,000 “illegal” files
was used to construct the tree and then searches were conducted for all of the
files in the larger corpus. The “Search Time” includes the time spent searching
the tree and the time to perform the comparisons at the leaves.

As expected, the maximum number of leaf nodes resulted in the fastest run
time. This configuration also yielded the maximum reduction in the number of
pairwise comparisons required, without substantially adding to the time required
to build and search the tree. The remainder of this analysis focuses on this
scenario, where the tree has 4,000 leaf nodes.



Expediting MRSH-v2 Approximate Matching 155

Fig. 6. Time to search for planted evidence (including pairwise comparisons).

The total time was 1,182 s (a 54% reduction in the time required for an all-
against-all pairwise comparison). Due to the lack of scalability of the pairwise
approach, this difference is likely to be even more pronounced for larger datasets.

Table 2. Similar recall for planted evidence experiment.

MRSH-v2 similarity Files planted Files found Similar recall

80%–100% 10 10 100%

60%–79% 10 10 100%

40%–59% 10 10 100%

20%–39% 10 8 80%

Overall 40 38 95%

In terms of effectiveness, all 100 files that were common to the two corpora
were successfully found. The similar recall is shown in Table 2. All files with a
MRSH-v2 similarity of 40% or greater with a file in the “illegal” set were success-
fully identified. Two files with a lower similarity (25% and 26%) were not found.
This yields an overall similar recall score of 95% for all 40 files.

This is an encouraging result, indicating that the HBFT approach is
extremely effective at finding files that are similar above a reasonable threshold
of 40% and exhibits full recall for identical files. Thus it can be concluded that
the HBFT data structure is a viable alternative to all-against-all comparisons in
terms of effectiveness, while achieving substantial speed gains.

6 Conclusions and Future Work

This paper aimed to investigate the effectiveness of using a Hierarchical Bloom
Filter Tree (HBFT) data structure to improve upon the all-against-all pairwise



156 D. Lillis et al.

comparison approach used by MRSH-v2. A number of experiments were con-
ducted with the aim of improving the speed of the process. Additionally, it was
important that files that should be found were not omitted.

The first experiment found that while HBFTs with more leaf nodes take
longer to build and search, they reduce the number of pairwise comparisons
required by the greatest degree. It also suggested the use of a min run value of
4, as higher values resulted in imperfect recall for identical files.

The results of the second experiment indicated that when using corpora of
different sizes, it is preferable to build the tree to model the smaller collection
and then search for the files that are contained the larger corpus.

For the final experiment, a Windows 7 image was augmented by the addition
of a number of files that were identical to those being searched for, and a further
group that were similar. The HBFT approach yielded a recall level of 100% for
the identical files and of 95% for the similar files, when using mrsh-v2 as ground
truth. On examining the two files that were not found, it was noted that these
had a relatively low similarity to the search files (25% and 26% respectively),
with all files with a higher similarity score being identified successfully. The run
time for this experiment was 54% of the time required for a pairwise comparison.

These experiments lead to the conclusion that the HBFT approach is a highly
promising technique. Due the poor scalability of the traditional all-against-all
approach, it can be inferred that this performance improvement will be even
more pronounced as datasets become larger.

Given the promising results of the experiments presented in this paper, fur-
ther work is planned. Currently, when building the tree, files are allocated to
leaf nodes in a round-robin fashion. For trees with multiple files represented at
each leaf, it may be possible that a more optimised allocation mechanism could
be used for this (e.g. to allocate similar files to the same leaf node). Addition-
ally, the current model also uses balanced trees, with the result that all successful
searches reach the same depth in the tree. In some circumstances, an unbalanced
tree may be preferable so as to shorten some more common searches.

References

1. van Baar, R., van Beek, H., van Eijk, E.: Digital forensics as a service: a game
changer. Digit. Invest. 11(Supplement 1), S54–S62 (2014). https://doi.org/10.
1016/j.diin.2014.03.007

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

3. de Braekt, R.I., Le-Khac, N.A., Farina, J., Scanlon, M., Kechadi, T.: Increas-
ing digital investigator availability through efficient workflow management and
automation. In: 2016 4th International Symposium on Digital Forensic and Secu-
rity (ISDFS), pp. 68–73 (2016). https://doi.org/10.1109/ISDFS.2016.7473520

4. Breitinger, F., Baier, H.: Similarity preserving hashing: eligible properties and a
new algorithm MRSH-v2. In: Rogers, M., Seigfried-Spellar, K.C. (eds.) ICDF2C
2012. LNICST, vol. 114, pp. 167–182. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-39891-9 11

https://doi.org/10.1016/j.diin.2014.03.007
https://doi.org/10.1016/j.diin.2014.03.007
https://doi.org/10.1109/ISDFS.2016.7473520
https://doi.org/10.1007/978-3-642-39891-9_11
https://doi.org/10.1007/978-3-642-39891-9_11


Expediting MRSH-v2 Approximate Matching 157

5. Breitinger, F., Baier, H., White, D.: On the database lookup problem of approx-
imate matching. Digit. Invest. 11, S1–S9 (2014). https://doi.org/10.1016/j.diin.
2014.03.001

6. Breitinger, F., Guttman, B., McCarrin, M., Roussev, V., White, D.: Approximate
matching: definition and terminology. NIST Spec. Publ. 800, 168 (2014)

7. Breitinger, F., Rathgeb, C., Baier, H.: An efficient similarity digests database
lookup - a logarithmic divide & conquer approach. J. Digit. Forensics Secur. Law
9(2), 155–166 (2014)

8. Broder, A.Z.: On the resemblance and containment of documents. In: Compression
and Complexity of Sequences 1997, Proceedings, pp. 21–29. IEEE (1997). https://
doi.org/10.1109/SEQUEN.1997.666900

9. Casey, E., Ferraro, M., Nguyen, L.: Investigation delayed is justice denied: propos-
als for expediting forensic examinations of digital evidence. J. Forensic Sci. 54(6),
1353–1364 (2009)

10. Gupta, J.N., Kalaimannan, E., Yoo, S.M.: A heuristic for maximizing investiga-
tion effectiveness of digital forensic cases involving multiple investigators. Comput.
Oper. Res. 69, 1–9 (2016). https://doi.org/10.1016/j.cor.2015.11.003

11. Harichandran, V.S., Breitinger, F., Baggili, I.: Bytewise approximate matching: the
good, the bad, and the unknown. J. Digit. Forensics Secur. Law: JDFSL 11(2), 59
(2016)

12. James, J.I., Gladyshev, P.: Automated inference of past action instances in digital
investigations. Int. J. Inf. Secur. 14(3), 249–261 (2015). https://doi.org/10.1007/
s10207-014-0249-6

13. Kornblum, J.: Identifying identical files using context triggered piecewise hashing.
Digit. Invest. 3, 91–97 (2006). https://doi.org/10.1016/j.diin.2006.06.015

14. Lillis, D., Becker, B., O’Sullivan, T., Scanlon, M.: Current challenges and future
research areas for digital forensic investigation. In: 11th ADFSL Conference on
Digital Forensics, Security and Law (CDFSL 2016), ADFSL, Daytona Beach, FL,
USA (2016). https://doi.org/10.13140/RG.2.2.34898.76489

15. Oliver, J., Cheng, C., Chen, Y.: TLSH-a locality sensitive hash. In: Cybercrime and
Trustworthy Computing Workshop (CTC), 2013 Fourth, pp. 7–13. IEEE (2013).
https://doi.org/10.1109/CTC.2013.9

16. Quick, D., Choo, K.K.R.: Impacts of increasing volume of digital forensic data: a
survey and future research challenges. Digit. Invest. 11(4), 273–294 (2014). https://
doi.org/10.1016/j.diin.2014.09.002

17. Rogers, M.K., Goldman, J., Mislan, R., Wedge, T., Debrota, S.: Computer forensics
field triage process model. J. Digit. Forensics Secur. Law 1(2), 19–38 (2006)

18. Roussev, V.: Data fingerprinting with similarity digests. In: Chow, K.P., Shenoi, S.
(eds.) IFIP International Conference on Digital Forensics. IFIP AICT, vol. 337, pp.
207–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15506-
2 15

19. Roussev, V.: An evaluation of forensic similarity hashes. Digit. Invest. 8, S34–S41
(2011)

20. Roussev, V., Richard III, G.G.: Breaking the performance wall: the case for dis-
tributed digital forensics. In: Proceedings of the 2004 Digital Forensics Research
Workshop, vol. 94 (2004)

21. Sadowski, C., Levin, G.: Simhash: hash-based similarity detection. Technical
report, Google (2007)

22. Scanlon, M.: Battling the digital forensic backlog through data deduplication. In:
Proceedings of the 6th IEEE International Conference on Innovative Computing
Technologies (INTECH 2016). IEEE, Dublin (2016)

https://doi.org/10.1016/j.diin.2014.03.001
https://doi.org/10.1016/j.diin.2014.03.001
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1016/j.cor.2015.11.003
https://doi.org/10.1007/s10207-014-0249-6
https://doi.org/10.1007/s10207-014-0249-6
https://doi.org/10.1016/j.diin.2006.06.015
https://doi.org/10.13140/RG.2.2.34898.76489
https://doi.org/10.1109/CTC.2013.9
https://doi.org/10.1016/j.diin.2014.09.002
https://doi.org/10.1016/j.diin.2014.09.002
https://doi.org/10.1007/978-3-642-15506-2_15
https://doi.org/10.1007/978-3-642-15506-2_15

	Expediting MRSH-v2 Approximate Matching with Hierarchical Bloom Filter Trees
	1 Introduction
	2 Background: Approximate Matching
	3 The MRSH-v2 Algorithm
	4 Hierarchical Bloom Filter Trees (HBFT)
	5 Experiments
	5.1 Datasets
	5.2 Experiment Overview

	6 Conclusions and Future Work
	References


