FindEvasion: An Effective
Environment-Sensitive Malware Detection
System for the Cloud

Xiaoqi Jial'234, Guangzhe Zhou?3* Qingjia Huang!234(&),

Weijuan Zhang'?34, and Donghai Tian®

! Institute of Information Engineering, CAS, Beijing, China
{jiaxiaoqi,zhouguangzhe,huangqingjia,zhangweijuan}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China
3 Key Laboratory of Network Assessment Technology, CAS, Beijing, China
4 Beijing Key Laboratory of Network Security and Protection Technology,
Beijing, China
5 Beijing Key Laboratory of Software Security, Engineering Technique,
Beijing Institute of Technology, Beijing, China

Abstract. In recent years, environment-sensitive malwares are growing
rapidly and they pose significant threat to cloud platforms. They may
maliciously occupy the computing resources and steal the tenants’ pri-
vate data. The environment-sensitive malware can identify the operating
environment and perform corresponding malicious behaviors in differ-
ent environments. This greatly increased the difficulty of detection. At
present, the research on automatic detection of environment-sensitive
malwares is still rare, but it has attracted more and more attention.

In this paper, we present FindEvasion, a cloud-oriented system
for detecting environment-sensitive malware. Our FindEvasion system
makes full use of the virtualization technology to transparently extract
the suspicious programs from the tenants’ Virtual Machine (VM), and
analyzes them on our multiple operating environments. We introduce
a novel algorithm, named Mulitiple Behavioral Sequences Similarity
(MBSS), to compare a suspicious program’s behavioral profiles observed
in multiple analysis environments, and determine whether the suspicious
program is an environment-sensitive malware or not. The experiment
results show that our approach produces better detection results when
compared with previous methods.

Keywords: Cloud security + Environment-sensitive malware - MBSS
Transparent extraction - Multiple operating environments

1 Introduction

In recent years, increasing malwares have gradually become an important threat
to the construction of cloud computing. These malwares can not only occupy
© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

P. Matousek and M. Schmiedecker (Eds.): ICDF2C 2017, LNICST 216, pp. 3-17, 2018.
https://doi.org/10.1007/978-3-319-73697-6_1

4 X. Jia et al.

the computing resources maliciously, but also attack other tenants and even the
underlying platform to steal the other tenants’ private data. As more and more
data with sensitve and high commercial value information is migrated to the
Cloud, researchers paid more attention to the malware detection for the Cloud.

Among the various kinds of malwares, environment-sensitive malwares are
growing rapidly. This kind of malware can identify the current operating environ-
ment and perform corresponding malicious behaviors in different environments.
According to Symantec’s security threat report [1], 20% of new malwares are
environment-sensitive currently and the number of environment-sensitive mal-
ware is increasing at a rate of 10-15 per week.

In order to detect environment-sensitive malwares, some methods have been
proposed gradually, such as BareCloud [2] and Disarm [3]. BareCloud is based
on the bare-metal and only considers the operations that cause a persistent
change to the system. This will lead to many meaningful non-persistent mali-
cious operations being ignored, for example, the remote injection. Besides, Bare-
Cloud uses a Hierarchical similarity algorithm to compare the behavioral pro-
files, however, the detection ability of this algorithm will be greatly affected if
the environment-sensitive malware performs a lot of independent interference
behaviors. Disarm deploys two kinds of sandbox with different monitoring tech-
nologies. However, two kinds of environments are not enough to detect a variety
of evasive behaviors within the environment-sensitive malware. Therefore, how
to make the environment-sensitive malware exhibit the evasive behavior and
cope with the interference behaviors is the key issue for the detection.

In this paper, we present FindEvasion, a cloud-oriented system for auto-
matically detecting environment-sensitive malwares. The FindEvasion performs
malware analysis on multiple operating environments, which include Sandbox
environment, Debugging environment, Hypervisor environment and so on. In
order to analyze the suspicious program running in the guest VM, we make use
of the virtualization technology to transparently extract it from the guest VM
and the suspicious program will not be awared of this whole process. We pro-
pose an algorithm to compare the suspicious program’s behavioral profiles and
determine whether it is an environment-sensitive malware or not.

Our work makes the following contributions:

— We present a system called FindEvasion for detecting environment-sensitive
malwares. Our system makes full use of the virtualization technology to
transparently extract the suspicious program from the guest VM, and then
performs suspicious program analysis on multiple operating environments to
make the environment-sensitive malware exhibit the evasive behavior.

— We introduce a novel evasion detection algorithm, named MBSS, for behav-
ioral profiles comparsion. Our algorithm can cope with the interference behav-
iors to make the detection more effective.

— We present experimental evidence that demonstrates that the operations of
eliminating interference behaviors are effective for detecting enviornment-
sensitive malwares, and the recall rate is increased to 60% with 100%
precision.

FindEvasion 5

The rest of this paper is organized as follows. The next section presents the sys-
tem architecture of FindEvasion. Section 3 shows the implementation in detail. In
Sect. 4, we design four experiments for evaluating our system and MBSS algorithm.
Finally, we discuss related work in Sect. 5 and conclude the paper in Sect. 6.

2 System Architecture

As Fig. 1 shows, the FindEvasion architecture consists of two parts. One is the
Cloud service node, which provides service to the tenants. It contains an Extrac-
tion module in the VMM. The Extraction module can extract a suspicious pro-
gram running in the guest VM and transfer it to the multiple environments anal-
ysis platform for analyzing. More details are provided in Sect. 3.1. The other is
the multiple environments analysis platform, which includes Sandbox environ-
ment, VM environment, Hypervisor environment and debugging environment,
etc. It contains an Environment-sensitive detection module, which can compare
the behavioral profiles extracted from multiple analysis environments and make a
judgment that whether the suspicious program is environment-sensitive malware
or not. This is achieved by our MBSS algorithm.

The purpose of deploying multiple environments analysis platform is to identify
the deviations in the behaviors of a suspicious program. That is, if a suspicious pro-
gram is environment-sensitive, then it would have different behaviors obviously in
a specific environment compared to the other environment. Besides, it is necessary
to point out that the Hypervisor used in multiple environments analysis platform is
modified particularly. It can not only transparently monitor a suspicious program
based on the virtualization technology, but also avoid being detected by the mal-
ware. This can be achieved by some skills, for example cheating the guest. We insert
a kernel module in the VM environment and debugging environment for monitor-
ing. As for Sandbox environment, it contains own in-guest monitoring components.
Various monitoring technologies can also help us to find the environment-sensitive
malware that targets a specific monitoring technique.

Extraction module — . L
Environment-sensitive detection module

i i 1
| - !
I b !
| |Guest 1 Guest N ! | !
| o |
| } } }
i APP XX APP i ! @yperwsoD (Sandbox) Gebuggma (WM) (X X] }
i i J l !
i i !
| M |
| } } }
i

| ! proflles proﬁles proflles profiles | ®®® |
! extract extract i i

i i |
| ik |
| o |
| i 1
1 1N i
| M |
| o |
| 1 1
I) !
| b |
I [I
| [1
i I !
| b |
i L |
I ' } }

Fig. 1. FindEvasion system architecture.

6 X. Jia et al.

3 Implementation

3.1 Transparent Extraction

In order to analyze a suspicious program which is in the guest Operating System
(OS), we should extract it to the multiple environments analysis platform trans-
parently. Note that the suspicious program is running in the guest VM. So the
simple socket operation, like FTP, is easy to be awared by environment-sensitive
malware because of the abnormal network behaviors. For this reason, we need
to make use of the virtualization technology to extract the suspicious program
and the whole process will not be awared by the malwares in the guest VM.

The detail is illustrated in Fig. 2. It is necessary to point out that the kernel
module in the Guest OS has no HOOK operations and it can be completely
hidden and protected by the VMM. Hence, the suspicious program is hard to
detect inside the VM. For instance, if the Guest OS is win7, we can hide the mod-
ule through monitoring the NtQuerySystemInformation function in the VMM.
While a malware calls the function to query the modules in system, the VMM
will intercept it and return the fake information to the malware. In this way, the
kernel module can be hidden.

To better understand the procedure, we introduce the step details in Fig. 2.
(1) While a suspicious program is going to run in the Guest OS, the Extraction
module can capture this behavior. Then the Extraction module injects an event
to notify the kernel module in the Guest OS. (2) The kernel module in the
Guest OS receives notification from the Extraction module, then locates the
suspicious program’s executable file and copies it to a buffer. (3) The kernel
module in the Guest OS calls instruction VMCALL to cause a VM-Exit. Now,

Fig. 2.

Guest 0S Dom0O
)
(2) (6)
CopyFile WriteFile
A
|}
Kernel module Kernel module
Kernel
3 %
I !
Event inject VMCALL (4) hypercalls
1) (3) l notify
(5)
Extraction module
VMM

Extract suspicious programs from Guest OS using virtualization technology.

FindEvasion 7

the Extraction module obtains the binary executable file. (4) The Extraction
module notifies the kernel module in Dom0. (5) The kernel module in dom0
reads the Extraction module through hypercalls. (6) The executable file is saved
in Dom0. (7) We use socket operation to send the file from Dom0 to the multiple
environments analysis platform. Here, we can use the socket operation, because
the extracted suspicious program in Dom0 is only a static executable file and
it can not be aware of the network behaviors. By this way, we can extract the
suspicious program from Guest OS transparently.

3.2 Behavioral Profile

While the analysis of a suspicious program finishes in multiple operating environ-
ments, we need to extract it’s behavioral profiles. Bayer et al. [6] have proposed
an approach about how to extract behavioral profile from system-call trace. We
will use a similar method in our system.

Similar to the model proposed by Bayer et al., we define our behavioral profile
BP as a 4-tuple.

BP := (obj_type, obj_name, op_name, op_attr)

Where, obj_type is the type of objects, obj_name is the name of objects,
op_name is the name of operation and op_attr is a corresponding attribute to
provide additional information of a specific operation.

The obj_type is formally defined as follows.

obj_type := File(0) | Registry(1) | Syspath(2) | Process/Thread(3)
| Network(4)

The File type represents this Behavioral Profile (BP) is a file operation, such
as creating a file. The Registry type represents this BP is a registry key/value
operation. The Syspath type represents this BP is a system key path operation,
for example the %systemroot%. The Process/Thread type represents this BP is
an operation about a process or a thread, such as terminating a process. And the
Network type represents network behaviors, which include the remote IP and
port. Each type is represented by integers 0, 1, 2, 3, 4 to reduce the complexity
of behavior comparison later.

An operation must have a name, which is the API in reality. Besides, a
corresponding attribute is needed to provide additional information about the
operation. For example, the kernel function NtDeviceloControlFile is used uni-
formly to represent all the socket functions related. Hence, we need additional
information to tell us what exactly it is. That is, if we set the op_atir to the
string “send”, then we can clearly know this operation is the send function.

3.3 Behavior Normalization

In order to eliminate the influence of irrelevant factor and get a more reliable
result, it is necessary for us to perform a series of normalization steps. As we
all know, the same object may be represented differently in different systems,
however, this will bring great differences in the behavioral profiles and then lead
to a wrong judgment. Hence, we perform the following actions:

8 X. Jia et al.

(1) We transformed uniformly all of the behavioral profiles into lowercase. The
same behavioral profiles in different environment usually have different for-
mat. Some use uppercase and some use lowercase. In order to eliminate the
differences, we use lowercase uniformly.

(2) We set a fix value to the SID. The registry key HKEY USERS\<SID>
is a secure identifier and the value is generally different in each system.

(3) We performed repetition detection. Some malwares perform many times with
the same behaviors, which will cover up the real malicious acts. Therefore, if
the number of repetitions is more than five times, the processing of duplicate
removal is executed.

3.4 Behavior Comparison

The environment-sensitive malware often performs a lot of independent inter-
ference operations for anti-detection. The interference behaviors will appear in
each environment, and if we do not deal with them, they will make up a large
proportion of the behaviors and impact on the calculation of similarity. The pre-
vious methods, such as Hierarchy similarity [2], did not consider this issue, and
it would lead to an absolutely opposite analysis result. Therefore, we propose a
novel algorithm, named MBSS, which can eliminate interference behaviors and
make the comparison more robust.

The algorithm model. Let X = {x1,x2,%3,...Xn}, Y = {y1,2,¥3,---Ym }>
where X1—X,, Y1—Vm, €ach element represents a BP defined as Sect.3.2,
such that the set X represent all the Behavioral Profiles captured from a
specific environment. Let L(X) be the number of elements of the set X and
L(Y) be the number of elements of the set Y. Let set S be the intersection of
set X and set Y, that is S = X N'Y. We recursively define Sim as:

1 if0 < L(X) < Band0 < L(Y) < 8
Sim(X,Y) = 0 ?f L(x) == 0Oand L(Y) == 0 (1)
cpt(X,Y) if S == @and L(X) > Band L(Y) > g
Sim(X —x,Y —y;) ifS # @andx; == y;
where,
AB " AB;
ept(X,Y) = i1 (2)

AIIBL APV BY
Here, 0 is a configurable parameter and we designed an experiment in the
Sect.4.1 to try to search an optimal value for it. x; is an element in set X
and y; is an element in set Y. A is a vector transformed from set X and A4; € A.
Also, B is a vector transformed from set ¥ and B; € B. We realized a method
to transform the set into vector in Algorithm 2. The expression (2) is derived
from the cosine similarity algorithm and it represents the similarity between set
X and set Y after the interference operators are eliminated from set X and set
Y. Therefore, Sim(X,Y) represents the similarity score. More details about how
to eliminate interference behaviors are provided hereinafter.

FindEvasion 9

We can clearly see that Sim(X,Y) always lies between 0 and 1. Hence, the
deviation score between set X and set Y can simply be defined as:

Dis(X,Y) =1— Sim(X,Y) (3)

Also, Dis(X,Y) is in interval [0,1], that is if the value tends to 0, the deviation
between set X and set Y is small. On the other hand, if the value tends to 1, the
deviation is large. We define a deviation threshold ¢. If the Dis(X,Y) is greater
than ¢, we consider the suspicious program as an environment-sensitive malware.

Eliminate interference behaviors. Here, we use a simple but effective
method to eliminate interference behaviors. First we scan the behavioral profiles
captured from different environments, if there is a common behavioral profile,
that is all the elements in the 4-tuple defined as Sect. 3.2 are the same, we record
the position until all the common behavioral profiles are found. Then we remove
common behavioral profiles according to the positions we record. In this way,
we can eliminate most of the interference behaviors and leave the real malicious
behaviors behind. This simple method works well in our experiment.
We implement the above algorithm with pseudo code.

Algorithm 1. MBSS algorithm

Input: a suspicious samples behavioral profiles extracted in different
environments
Output: the sample is environment-sensitive or not

1 def Judge(bpl,bp2):

2 Dis = 1 - Sim(bpl,bp2)
3 if Dis > t:
4 return TRUE
5 else:
6 return FALSE
7 def Sim(bpl,bp2):
8 if 0 < len(bpl) < B and 0 < len(bp2) < §:
9 return 1
10 elif len(bpl) == 0 and len(bp2) == 0:
11 return 0
12 lines=[line for line in bpl if line in bp2]
13 if len(lines) ==
14 return cpt(bpl,bp2)
15 for line in lines:
16 bpl.remove(line)
17 bp2.remove(line)
18 return Sim(bpl,bp2)

In Algorithm 1, the parameter ¢ in the line 3 is a threshold. Lines 3-6 give
the result that the sample is environment-sensitive or not. Lines 7-18 is the
mainly part of our algorithm to compute the similarity score. Line 12 is to get

10 X. Jia et al.

the common behavioral profiles between bp1 and bp2. Lines 13-14 represent that
if there is no common behavioral profile, then we compute the similarity score.
More details are going to be described in Algorithm 2. Lines 1517 represent
that if there are a few of common behavioral profiles, then we do the processing
of eliminating interference, which just removing the common behavior profiles
from the set.

We implement the Algorithm 2 with pseudo code. Lines 2-3 is to split all the
4-tuple behavioral profiles into words. Line 4 is to union all the words into a
set. Lines 6-14 transform the set into vector, that is if an element not only in
the set allwords but also in the set wordl, then the vector! appends a value 1,
otherwise, appends a value 0. Line 15 makes use of the cosine similarity algorithm
to compute the similarity score.

Algorithm 2. Function cpt()

Input: a suspicious samples behavioral profiles after the interference behaviors
are eliminated
Output: the similarity score

1 def cpt(bpl,bp2):

2 wordl <- split the bpl into words
3 word2 <- split the bp2 into words
4 allwords <- union all the words in wordl and word2
5 vectorl = [], vector2 = ||
6 for w in allwords:
7 if w in word1:
8 vectorl.append(1)
9 else:
10 vectorl.append(0)
11 if w in word2:
12 vector2.append(1)
13 else:
14 vector2.append(0)
15 return cosine(vectorl,vector2)

4 FEvaluation

We use Xen-4.4.0 [4] to build the Cloud service node. The Hypervisor environ-
ment used in multiple environments analysis platform is also based on Xen-4.4.0.
We use cuckoo [5] to build Sandbox environment. Moreover, we deploy debug-
ging environment with windbg and Ollydbg, and deploy VM environment using
VMware workstation 12. And we choose Windows 7 SP1 (32bit) as the operating
system for all analysis environments in the experiment.
We use the precision and recall [7] to measure the detection effectiveness.
TP TP

Precision = ——— - 4
recision = o p b Recall TP L FN (4)

FindEvasion 11

where, TP represents true positive, FP represents false positive and FN repre-
sents false negative.

We designed four experiments for the following purposes. The first exper-
iment was to look for the optimal parameter 8 used in MBSS algorithm. The
second was to evaluate MBSS algorithm by performing the precision-recall analy-
sis. The third was to demonstrate the effectiveness of eliminating the interference
behaviors on detecting the environment-sensitive malwares. The last experiment
was a large scale test for evaluating the feasibility and usability of FindEvasion.

In order to evaluate our approach, we selected the BareCloud [2] as a com-
parison in the following experiments. The BareCloud was developed to detect
environment-sensitive malware in 2015, and used the Hierarchy similarity algo-
rithm to compare the behavioral profiles. It has the 40.20% recall rate with 100%
precision.

4.1 Optimal Parameter 3 Selection

In this experiment, we try to look for the optimal parameter § used in our
algorithm.

Dataset. We randomly selected 140 environment-sensitive malwares and 140
common malwares as the dataset of this experiment. For simplicity, we just
considered Win32 based malware in PE file format.

We extracted the behavioral profiles of these samples from all the analysis envi-
ronments and computed the deviation score by varying the parameter 3 between 2
and 20. The result is illustrated in Fig. 3. We can clearly see that when the param-
eter (3 exceeds 8, the precision keeps on 100%. According to our algorithm defined
in Sect. 3.4, when we choose a higher value for the parameter 3, the similarity score
will get higher so that the deviation score will become lower. That is, if a malware
is judged as environment-sensitive, it will always be true with the 100% precision.
However, from the Sect. 3.4, the expression (1) tells us that if we select the § too
high, the similarity score will have great chance to be 1. This will cause the devi-
ation score to be 0 and the recall rate will be lower relatively. Therefore, we can
choose 3 between 9 and 12. Here, we selected 3 = 10.

0.9
0.8
0.7

c 0.6

205 '

T 04 B=10 |
03 i
0.2 !
0.1

2 4 6 8 10 12 14 16 18 20

Parameter B

Fig. 3. The selection of parameter (3

12 X. Jia et al.

4.2 Algorithm Evaluation

In this experiment, we evaluated our MBSS algorithm by comparing with the
Hierarchy similarity algorithm.

Dataset. We selected 542 environment-sensitive malwares and 319 common
malwares. Also, we just considered Win32 based malware in PE file format for
simplicity.

We extracted the behavioral profiles of above malwares from all the analy-
sis environments and computed the deviation score using MBSS algorithm and
Hierarchy similarity algorithm.

We performed a precision-recall analysis by varying the threshold ¢ for these
deviation score. If the deviation score exceeds the threshold ¢, the sample is
considered as environment-sensitive. The result is presented in Fig.4. We can
clearly see that the MBSS algorithm gives better results. The reason is that
the interference behaviors can impact on the detection of environment-sensitive
malwares and our algorithm is able to cope with this issue. In the Sect. 4.3, we
demonstrated the effectiveness of eliminating the interference behaviors.

Figure 5 illustrates the precision-recall characteristics of the MBSS algorithm
by varying the threshold ¢ between 0 and 1. We can clearly see that when the
threshold ¢ = 0.75, we get 100% precision with the recall rate of 60%. Compared
to the recall rate of Hierarchy similarity algorithm, our algorithm’s recall rate
increases by 20% approximately.

1
0.9
0.8
0.7
0.6
0.5

0.4
03 =4 MBSS

Precision

0.2 == Hierarchical-similarity
0.1

0
0 010203040506 070809 1

Recall

Fig. 4. Precision-Recall analysis of the MBSS and Hierarchy similarity behavior com-
parison

4.3 The Effectiveness of Eliminating Interference Behaviors

Since the Hierarchy similarity does not consider the influence of interference
behaviors, we can therefore demonstrate the effectiveness by comparing the
detection number of environment-sensitive malwares.

FindEvasion 13

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2 t=0.75
0.1

0

Precision

e Precision

= = = Recall

0 01 02 03 04 05 06 07 08 09 1
Threshold t

Fig. 5. Precision-Recall analysis of the behavior devision threshold value ¢

Dataset. We selected 380 environment-sensitive malwares as the dataset of
this experiment. Each of the above malwares can perform a lot of interference
operations. We only considered Win32 based malware in PE file format.

We extracted the behavioral profiles of these samples from all the analy-
sis environments and computed the MBSS-based deviation score. We used the
threshold ¢ = 0.75 and parameter § = 10 that were selected in the previous
experiments. We also used the Hierarchy similarity to calculate deviation score.
The comparion result is shown in Fig. 6. We can clearly see that the MBSS algo-
rithm gives better results. The MBSS algorithm was able to detect a total of 351
environment-sensitive malwares, which accounted for 92.4%. By contrast, the
Hierarchy similarity only detected a total of 93 environment-sensitive malwares,
which accounted for 24.5%. In other words, if an environment-sensitive malware
performs a lot of interference operations, our MBSS algorithm works better than
Hierarchy similarity algorithm. It also proves that the operation of eliminating
interference behaviors is useful to detect the environment-sensitive malware.

400

g 350
£
=
S 300
> un
g L
5 g 250
5 e
S € 200
£2 351
2B
c @ 150
o o
T v
@ 100
2
E 50 93
0
MBSS Hierarchical-similarity

Algorithms

Fig. 6. The detection effect of MBSS algorithm compared to Hierarchy similarity
algorithm

14 X. Jia et al.

4.4 Large Scale Test

In this experiment, we evaluated the feasibility and usability of our FindEvasion
system on a larger dataset, using BareCloud [2] system as a comparison.

Dataset. We have used VXHeaven Virus Collection [8] database which is avail-
able for free download in the public domain. We selected a total of 7257 malware
samples and only considered Win32 based malware in PE file format. Note that,
since we do not have a ground truth for this dataset, we cannot provide the
precision rate and recall rate.

We ran FindEvasion and BareCloud using the same dataset, and made a judg-
ment. The result is presented in Fig. 7. We can clearly see that our FindEvasion
system detected 176 more samples than BareCloud did. Through manual reverse
analysis, we confirmed that these samples are environment-sensitive malwares.

800
700
600
500
400

300 563

200 387
100

The detection number of environment-
sensitive malwares

0
FindEvasion BareCloud

Systems

Fig. 7. The detection effect of FindEvasion and BareCloud

5 Limitations

Through the experiments result, we can clearly see that FindEvasion is able
to detect environment-sensitive malwares. However, some samples using specific
technologies can escape the detection. In this section, we describe the limitations
of our system.

Firstly, if a sample uses stalling code to wait for some times before performing
malicious behaviors, our system will lead to a wrong analysis result. The reason is
that, our system’s analysis time is limited. Within the limited time, the malware
sample may be sleeping and escape the detection.

Secondly, our system can only identify the environment-sensitive malwares
and it can not find out the provenance of the infection which may lead back to
the offender. Our log files can only record the behaviors of malwares which do
not include the attack’s information.

FindEvasion 15

6 Related Work

6.1 Dynamic Analysis

Dynamic analysis is the testing and evaluation of an application during runtime.
Recently, many dynamic analysis tools have been developed for automatically
analyzing malware. Most of them make use of the sandbox techniques. A sand-
box is implemented by executing the software in a restricted operating system
environment. Some tools like CWSandbox [9] and Norman Sandbox [10], mak-
ing use of in-guest techniques for intercepting Windows API calls. This method
is easy to be awared by environment-sensitive malware and be bypassed. The
emulation or virtualization technologies are also universally used, for example
VMScope [11], TTAnalyze [12], and Panorama [13], which are based on the Qemu
[14] to record the API. Besides, Ether [15], VMwatcher [16] and HyperDBG [17]
are the representative of hardware-supported virtualization technology.

6.2 Transparent Monitoring

In order to prevent the environment-sensitive malware from escaping the detec-
tion, it is necessary to develop transparent analysis platforms. Cobra [18] uses
dynamic code translation, fighting with the environment-sensitive malware with
anti-debugging techniques. It performs the behavioral analysis by modifying the
memory properties. There are also a number of tools based on the out-of-VM
monitoring which can provide transparent monitoring. Examples include Ether
[15] which makes use of the hardware-supported virtualization. However, the
tools above only provide very few kinds of environments which is not conducive
to identify the environment-sensitive malware.

6.3 Evasion Detection

Chen et al. [19] proposed a detailed classification of anti-virtualization and
anti-debugging techniques used by environment-sensitive malwares. According
to their experiments, if an environment-sensitive malware is under a debugger
or virtual machine environment, it showed less malicious behaviors. Lau and
Svajcer [20] have proposed a method to detect VM detection by dynamic-static
tracing technique. Disarm [3] deployed two kinds of analysis environments to
compare the behavioral profiles. It requires each sample to be analyzed multiple
times in each analysis environment. This procedure would reduce the influence
of random files name. After that, it computes the deviation score through the
inter-sanbox distance and intra-sanbox distance based on the Jaccard similarity.
BareCloud [2] use the bare-metal environment, which has no monitoring compo-
nent in the Guest OS. They only consider the persistent change to the system and
they proposed a hierarchical similarity algorithm based on the Jaccard similarity
to compute the deviation score. The major difference between BareCloud and
our work is that we deployed multiple analysis environments and we proposed a
novel algorithm, which can deal with the interference behaviors.

16 X. Jia et al.

7 Conclusions and Future Work

In this paper, we present FindEvasion, a malware detection system for the Cloud.
Different from traditional system, our system introduces a novel evasion detec-
tion algorithm that can effectively detect environment-sensitive malwares. As
mentioned above, the environment-sensitive malwares can identify the operating
environment and perform corresponding malicious behaviors in different environ-
ment. With the development of cloud computing, they have gradually become an
important threat to cloud platforms. In order to make the environment-sensitive
malware exhibit the evasive behavior and cope with the interference behaviors,
we perform malware analysis on multiple operating environments and propose
an algorithm to compare the suspicious programs behavioral profiles. Our app-
roach can tranparently extract the suspicious programs from the guest VM and
eliminate the influence of the interference behaviors. We have empirically demon-
strated that this approach works well in practice and that is efficient.

In future, we would like to focus on adding the capability of human-computer
interaction and handling stalling code. A malware can sleep for a long time to
escape the analysis or the malicious behaviors need human to interact. Within
a limited analysing time(e.g., five minutes), our system can not observe the
malicious behaviors and this will lead to a wrong analysis result. Besides, our
log files should record the provenance of the infection for leading back to the
offender. We will deal with these issues in the future. Moreover, we plan to
evaluate the robustness of our proposed technique on a customized dataset.

Acknowledgments. This paper is supported by National Natural Science Foundation
of China (NSFC) under Grant No. 61572481, National key research and development
program of China under Grant No. 2016YFB0801600 and Nation key research and
development program of China under Grant No. 2016QY04W0900.

References

1. Symantec. https://www.symantec.com/security-center/threat-report

2. Kirat, D., Vigna, G., Kruegel, C.: Barecloud: bare-metal analysis-based evasive
malware detection. In: Malware Detection (2014)

3. Lindorfer, M., Kolbitsch, C., Milani Comparetti, P.: Detecting environment-
sensitive malware. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011.
LNCS, vol. 6961, pp. 338-357. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23644-0-18

4. Linux Foundation: The Xen project. http://www.xenproject.org/. Accessed 4 Mar
2017

5. Cuckoo Sandbox. http://www.cuckoosandbox.org

6. Bayer, U., Comparetti, P.M., Hlauschek, C., Krgel, C., Kirda, E.: Scalable,
behavior-based malware clustering. In: Network and Distributed System Security
Symposium, NDSS 2009, San Diego, California, USA, February 2009

7. Powers, D.M.W.: Evaluation: from precision, recall and f-factor to ROC, informed-
ness, markedness and correlation. J. Mach. Learn. Technol. 2, 2229-3981 (2011)

https://www.symantec.com/security-center/threat-report
https://doi.org/10.1007/978-3-642-23644-0_18
https://doi.org/10.1007/978-3-642-23644-0_18
http://www.xenproject.org/
http://www.cuckoosandbox.org

10.
11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

FindEvasion 17

VX Heaven Virus Collection: VX Heaven. http://vx.nextlux.org. Accessed 4 Mar
2017

Willems, C., Holz, T., Freiling, F.: Toward automated dynamic malware analysis
using CWSandbox. IEEE Secur. Priv. 5(2), 32-39 (2007)

Norman Sandbox. http://www.norman.com/

Jiang, X., Wang, X.: “Out-of-the-Box” monitoring of VM-based high-interaction
honeypots. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS,
vol. 4637, pp. 198-218. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74320-0_11

Bayer, U., Kruegel, C., Kirda, E.: TTAnalyze: A Tool for Analyzing Malware (2006)
Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: capturing system-
wide information flow for malware detection and analysis. In: ACM Conference on
Computer and Communications Security, CCS 2007, Alexandria, Virginia, USA,
pp- 116-127, October 2007

Bellard, F.: QEMU, a fast and portable dynamic translator. In: Conference on
USENIX Technical Conference, p. 41 (2005)

Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware analysis via hardware
virtualization extensions. In: ACM Conference on Computer and Communications
Security, CCS 2008, Alexandria, Virginia, USA, pp. 51-62, October 2008

Jiang, X., Wang, X., Xu, D.: Stealthy malware detection through VMM-based
“Out-of-the-Box” semantic view reconstruction. In: ACM Conference on Computer
and Communications Security, CCS 2007, Alexandria, Virginia, USA, pp. 128-138,
October 2007

Fattori, A., Paleari, R., Martignoni, L., Monga, M.: Dynamic and transparent anal-
ysis of commodity production systems. In: IEEE/ACM International Conference
on Automated Software Engineering, pp. 417-426 (2010)

Vasudevan, A., Yerraballi, R.: Cobra: fine-grained malware analysis using stealth
localized-executions. In: IEEE Symposium on Security & Privacy, p. 15 pp. -279
(2006)

Chen, X., Andersen, J., Mao, Z.M., Bailey, M.: Towards an understanding of anti-
virtualization and anti-debugging behavior in modern malware. In: IEEE Interna-
tional Conference on Dependable Systems and Networks with FTCS and DCC,
pp. 177-186 (2008)

Lau, B., Svajcer, V.: Measuring virtual machine detection in malware using DSD
tracer. J. Comput. Virol. Hacking Tech. 6(3), 181-195 (2010)

http://vx.nextlux.org
http://www.norman.com/
https://doi.org/10.1007/978-3-540-74320-0_11
https://doi.org/10.1007/978-3-540-74320-0_11

	FindEvasion: An Effective Environment-Sensitive Malware Detection System for the Cloud
	1 Introduction
	2 System Architecture
	3 Implementation
	3.1 Transparent Extraction
	3.2 Behavioral Profile
	3.3 Behavior Normalization
	3.4 Behavior Comparison

	4 Evaluation
	4.1 Optimal Parameter Selection
	4.2 Algorithm Evaluation
	4.3 The Effectiveness of Eliminating Interference Behaviors
	4.4 Large Scale Test

	5 Limitations
	6 Related Work
	6.1 Dynamic Analysis
	6.2 Transparent Monitoring
	6.3 Evasion Detection

	7 Conclusions and Future Work
	References

