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Abstract. Traditional semi-blind channel estimator is based on eigen value
decomposition (EVD) or singular value decomposition (SVD), which effectively
reduces the interference through dividing the observed signal into signal sub-
space and noise subspace. Due to the large computation, Massive MIMO sys-
tems could not afford the cost of traditional algorithms in spite of the high
performance. In this paper, we propose a channel estimation algorithm based on
subspace tracking, in which the signal subspace is obtained by approximating
power iteration algorithm. Without sacrificing the estimation performance, the
complexity is greatly reduced compared with the traditional semi-blind channel
estimation algorithm, which improves the applicability of the estimator.
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1 Introduction

Massive MIMO technology greatly improves the system capacity and spectrum effi-
ciency [1–4] through installing hundreds or thousands of antennas at BSs. It has
become one of the key technologies of 5G now. The dimension of the channel state
matrix increases with the number of antennas, which results in higher requirements for
the channel estimation algorithm. Pilot contamination is particularly prominent in
Massive MIMO system, so it’s a serious problem to seek low complexity and anti-pilot
contamination channel estimation algorithm.

The pilot-based channel estimation algorithms can’t completely eliminate the
effects of pilot contamination [5–7], while full-blind or semi-blind channel estimation
algorithms don’t require pilots or transmit fewer short pilots, thus avoiding pilot
contamination. The subspace based channel estimation algorithm divides observation
signal into signal subspace and noise subspace, which effectively reduces the inter-
ference and obtains the excellent estimation performance. Ngo. B. Q proposed a EVD
based channel estimation algorithm to transform the channel estimation problem into
the problem of ambiguous matrix. Through the eigenvalue decomposition of the
received vector covariance matrix, the channel vector can be expressed as a corre-
sponding eigenvector multiplying a scalar ambiguous factor, and the ambiguous factors
constitute an ambiguous diagonal matrix [8]. The estimation performance and error
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term of EVD based algorithm are theoretically deduced and analyzed in [9], then the
generalized linear (WL) algorithm is proposed. Dr. Hu proposed a semi-blind channel
estimation algorithm based on SVD for Massive MIMO systems, like the method in
[8], singular value decomposition of the received vector covariance matrix is needed.
The ambiguity matrix of SVD based channel estimator is not a diagonal matrix, but a
square matrix, which reduces the error caused by the non-orthogonal channel [10].

EVD and SVD algorithm have a large computational complexity O(M3), where
M is the dimension of the received vector. When the number of antennas in the BS
reaches hundreds, the huge complexity of EVD or SVD based algorithm is unac-
ceptable in Massive MIMO systems. In this paper, a subspace tracking based channel
estimation algorithm is proposed, which uses the approximation power iteration
algorithm to obtain the signal subspace with fast convergence and low complexity, the
computational complexity to solve signal subspace of each iteration is O(MK2) using
API algorithm, FAPI algorithm needs only O(MK) operations for each update [11],
K is the number of users in each cell.

2 System Model

Consider a multiuser Massive MIMO system with L cells that share the same band of
frequencies, each cell contains K single-antenna users and one central BS equipped
with M antennas. The system works in time-division duplex, so the uplink channel
matrix is just the transpose of the downlink matrix because of the channel reciprocity.
We consider the uplink where the users in the system synchronously send signals to
BSs, the received signal vector at the BS of the jth cell can be expressed as

yj ¼
ffiffiffiffiffi
pu

p XL
i¼1

Gjixi þ wj ð1Þ

Gji ¼ HjiD
1=2
ji ð2Þ

where xi is the transmitted symbols by the K users from the ith cell. pu is the average
power used by each user. Hji is the M � K matrix of fast fading coefficients between

K users in the ith cell and the jth BS. D1=2
ji is a K � K diagonal matrix representing the

geometric attenuation and shadow fading, diagonal elements are Dji
� �

kk¼ bjik.wj is
additive Gaussian white noise with zero mean and unit variance.

3 Traditional Semi-blind Channel Estimation

In this section, EVD and SVD based semi-blind channel estimator will be introduced.

3.1 EVD Based Estimator

The covariance matrix of the received vector yj can be expressed as
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Ry ,EfyjyHj g ¼ pu
XL
i¼1

HjiDjiHH
ji þ IM ð3Þ

The channel vectors are approximately orthogonal in the Massive MIMO systems.
multiplying (3) from the right by Hjj, then we can obtain

RyHjj � HjjðMpuDjj þ IKÞ ð4Þ

When M trends to infinity, the columns of Hjj are approximately orthogonal, and
MpuDjj þ IK is a diagonal matrix. So Eq. (4) can be considered as a characteristic
equation for the covariance matrix Ry, the kth column of Hjj is the eigenvector cor-
responding to the eigenvalue Mpbjjk þ r2w of Ry. Each column of Hjj can be expressed
as a corresponding eigenvector multiplying a scalar ambiguous factor, which is

Ĥ
EVD
jj ¼ UjC ð5Þ

where Uj is the M � K eigenvector matrix. Ambiguity matrix C is K-order diagonal
matrix, the ambiguity can be solved by using a short pilot sequence.

In practice, this covariance matrix is unavailable. Instead, we use the sample data
covariance matrix R̂y as the estimate of Ry,

R̂y ,
1
Nd

XNd

n¼1

yjðnÞyjðnÞH ð6Þ

The EVD-based channel estimation algorithm is as follows,

(1) Given the number of samples Nd, compute R̂y.
(2) Perform EVD of R̂y, then obtain Uj.

(3) Obtain the estimate Ĉ of ambiguity matrix using a short pilot sequence.

(4) Obtain the channel estimate as Ĥ
EVD
jj ¼ UjĈ.

3.2 SVD Based Estimators

The channel estimation based on EVD algorithm utilizes orthogonality of the channel
vectors, However, the antenna number M in the actual system is not infinite, The
channel vectors are not perfectly orthogonal. The ambiguity matrix of SVD based
channel estimator is not a diagonal matrix, but a square matrix, which reduces the error
caused by the non-orthogonal channel.

The channel matrix can be expressed as

Hji ¼ ~HjiCi ð7Þ
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where Ci 2 C
K�K represents the error between the real channel matrix Hji and the

orthogonal channel matrix ~Hji. Substituting into (3), then Ry ¼ pu
PL
i¼1

~HjiAji ~H
H
ji þ IM ,

where the k-order normal matrix Aji ¼ CiDjiC
H
i and its SVD form Aji ¼ Vi

~RiVH
i ,

Vi 2 C
K�K is the left-singular matrix. Therefore, Ry can be expressed as

Ry ¼ pu
XL
i¼1

~HjiVi
~RiVH

i
~H
H
ji þ IM ð8Þ

Ry is also a normal matrix and its SVD can be expressed as

Ry ¼ QjRjQH
j ð9Þ

where Qj contains M singular vectors; Rj is a real diagonal matrix which contains

M singular values with descending order. Qj ¼ Qs
j

h
;Qn

j

i
, where Qs

j 2 C
M�K ,

Qn
j 2 C

M�ðM�KÞ. The columns of 1ffiffiffi
M

p ~HjiVi are the left-singular vectors that correspond

to the largest KL singular values of Ry. Assuming bjjk � bjik, Q
s
j can be denoted as

Qs
j ¼ 1ffiffiffi

M
p ð~Hjj þFjÞVjBj.Fj ¼

ffiffiffiffiffi
M

p
OjVH

j corresponds to the ICI in the received data

symbols, Bj is a permutation matrix. Despite Fj, we obtain

Qs
j ¼

1ffiffiffiffiffi
M

p HjjEj ð10Þ

where Ej ¼ C�1
j VjBj, ambiguity matrix Ej is approximately a unitary matrix, the

estimate of Ej can be resolved by pilot,

Êj ¼ 1ffiffiffiffiffi
M

p ðĤLS
jj ÞHQs

j ð11Þ

From (10) and (11), we obtain the channel estimate,

Ĥ
SVD
jj ¼ Qs

j ðQs
j ÞHĤ

LS
jj ð12Þ

The SVD-based channel estimation algorithm is as follows,

(1) Given the number of samples Nd, compute R̂y.
(2) Perform SVD of R̂y, then obtain Qs

j .

(3) Compute the pilot-based channel estimate Ĥ
LS
jj .

(4) Obtain the channel estimate as Ĥ
SVD
jj ¼ Qs

j ðQs
j ÞHĤ

LS
jj .
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4 Subspace Tracking Based Channel Estimation

Although EVD and SVD-based algorithms effectively reduce the interference, but the
complexity is too large to apply to Massive MIMO system.

The subspace tracking based channel estimation algorithm is similar to the principle
based on SVD, except that the method of obtaining the signal subspace is different. The
algorithm steps are as follows,

(1) Given the number of samples Nd.
(2) Obtain the signal subspace estimate ~Q

s
j using subspace tracking algorithm.

(3) Compute the pilot-based channel estimate Ĥ
LS
jj .

(4) Obtain the channel estimate as Ĥ
ST�CE
jj ¼ ~Q

s
j ð~Q

s
j ÞHĤ

LS
jj .

4.1 API Subspace Tracking Algorithm

The approximated power iteration subspace algorithm is an improvement to the power
iteration algorithm. Firstly, we introduce the idea of the power iteration subspace
tracking algorithm.

The covariance matrix of the received vector yðnÞ can be expressed as

RyyðnÞ ¼
Xn

m¼�1
sn�myðnÞyðnÞH ð13Þ

where s is the forgetting factor. The covariance matrix can be recursively updated
according to the following scheme,

RyyðnÞ¼ sRyyðn� 1Þþ yðnÞyðnÞH ð14Þ

Let the M � K orthogonal matrix QðnÞ be transformed into the dominant subspace
of RyyðnÞ, then the compressed received vector rðnÞ ¼ Qðn� 1ÞHyðnÞ. The power
iteration method tracks the dominant subspace by the following compression step and
orthonormalization step,

RyrðnÞ ¼ RyyðnÞQðn� 1Þ ð15Þ

QðnÞWðnÞ ¼ RyrðnÞ ð16Þ

where WðnÞ a non-negative Hermitian matrix, and satisfying WðnÞHWðnÞ ¼
RyrðnÞHRyrðnÞ. If RyyðnÞ remains constant and its first K eigenvalues are strictly larger
than the M-K others, the power iteration method converges globally and exponentially
to the dominant subspace.

By introducing the compensation matrix and the auxiliary matrix, the API algo-
rithm makes QðnÞ and RyrðnÞ independent recursive operations, and avoids the com-
plicated process of solving WðnÞ. The steps of the API algorithm are shown in Table 1.
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4.2 FAPI Subspace Tracking Algorithm

The fast approximated power iteration algorithm optimizes the solution process of the
compensation matrix, thus speeding up the convergence. The steps of the FAPI
algorithm are shown in Table 2.

Table 1. API algorithm

Step Complexity

Initialization: Qð0Þ ¼ ½Ik; 0ðM�kÞ�k� ; Zð0Þ ¼ Ik
FOR n ¼ 1; 2; � � � ;Nd

rðnÞ ¼ Qðn� 1ÞHyðnÞ MK

hðnÞ ¼ Zðn� 1ÞrðnÞ K2

gðnÞ ¼ hðnÞ
sþ rðnÞHhðnÞ

2K

eðnÞ ¼ yðnÞ �Qðn� 1ÞrðnÞ MK

HðnÞ¼ ðIk þ eðnÞk k2gðnÞgðnÞHÞ�1
2 M þ OðK3Þ

ZðnÞ ¼ 1
sHðnÞHðIk � gðnÞyðnÞHÞZðn� 1ÞHðnÞ�H OðK3Þ

QðnÞ ¼ ðQðn� 1Þþ eðnÞgðnÞHÞHðnÞ MK2 þ MK

End

Table 2. FAPI algorithm

Step Complexity

Initialization: Qð0Þ ¼ ½Ik; 0ðM�kÞ�k� ; Zð0Þ ¼ Ik
FOR n ¼ 1; 2; � � � ;Nd

rðnÞ ¼ Qðn� 1ÞHyðnÞ MK

hðnÞ ¼ Zðn� 1ÞrðnÞ K2

e2ðnÞ ¼ yðnÞk k2� rðnÞk k2 MþK

#ðnÞ ¼ e2ðnÞ
1þ e2ðnÞ gðnÞk k2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2ðnÞ gðnÞk k2

p K

gðnÞ ¼ 1� #ðnÞ gðnÞk k2 1

r0ðnÞ ¼ rðnÞgðnÞþ gðnÞ#ðnÞ 2K

h0ðnÞ¼Zðn� 1ÞHr0ðnÞ K2

eðnÞ ¼ #ðnÞ
gðnÞ ðZðn� 1ÞgðnÞ � h0ðnÞHgðnÞgðnÞÞ K2 þ 3K

ZðnÞ ¼ 1
s ðZðn� 1Þ � gðnÞh0ðnÞH þ eðnÞgðnÞHÞ 2K2

e0ðnÞ ¼ yðnÞgðnÞ �Qðn� 1Þr0ðnÞ MK þM

QðnÞ ¼ Qðn� 1Þþ e0ðnÞgðnÞH MK

End
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4.3 Complexity Analysis

API algorithm has a computational complexity MK2 + O(MK) for each update, FAPI
algorithm needs only 3MK + O(M) operations for each update. The number of samples
is Nd, the complexity to obtain K � K-dimensional signal subspace based on different
algorithms is shown in Table 3.

Obviously, the FAPI based channel estimation algorithm greatly reduces the
complexity of the SVD based algorithm, and the simulation analysis based on the
subspace tracking channel estimation algorithm will be introduced in the next section.

5 Simulation Results

Let M = 128, K = 4, L = 3. The large scale fading of the main cell take the random
value of 0.6–1, and the large scale fading of the adjacent cells take the random value of
0.1–0.4. The modulation mode is BPSK. The estimation accuracy of the various
algorithms is measured by the normalized mean square error (NMSE), which is defined
as follows,

NMSE ¼ Ĥ�H
�� ��2

F

Hk k2F
ð10Þ

where Ĥ is the channel estimate of H.
The simulation results of the channel estimation algorithm based on subspace

tracking are shown in Fig. 1, and the performance curves of EVD and SVD are also
given for comparative analysis.

As the simulation shown, the API-CE and FAPI-CE channel estimation algorithms
approach to the estimation performance of the SVD-based algorithm, and outperform
the EVD-based algorithm. When SNR is 10 dB, the performance of the proposed
algorithm is improved by nearly 10 dB compared with EVD algorithm. With the
increase of SNR, the estimation accuracy of the proposed algorithm is higher, but the
performance of EVD algorithm is not improved significantly because of the
nonorthogonality part of the channel vectors.

As shown in Fig. 2, with the increase of antenna number, the estimation accuracy
of API-CE and FAPI-CE algorithm both improve. When M grows from 100 to 300, the
NMSE curve decreased significantly, the main source of error at this time is the channel

Table 3. Algorithm complexity

Algorithm Complexity

SVD O(M3) + NdM
2

API-CE NdMK2 + NdO(MK)
FAPI-CE 3NdMK + NdO(M)
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nonorthogonality. When M is 300 to 500, the decrease of NMSE is gentle, the main
factor that limits the performance is the error between the sample data covariance
matrix and the real covariance matrix.

6 Conclusion

In this paper, we propose a channel estimation algorithm based on approximation
power iteration subspace tracking. The computational complexity to solve signal
subspace of each iteration is MK2 + O(MK) using API algorithm, 3MK + O(M) using
FAPI algorithm. The proposed channel estimation algorithms approach to the esti-
mation performance of the SVD based algorithm, and outperform the EVD based
algorithm in terms of the normalized mean square error, while greatly reduce the

Fig. 1. NMSE versus Eb/N0 for M = 128, k = 4, L = 3, Nd = 100.

Fig. 2. NMSE versus M for Eb/N0 = 5 dB, k = 4, L = 3, Nd = 100.
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computational complexity. As the number of antennas increases, the estimation
accuracy of API-CE and FAPI-CE algorithm improves. Therefore, the low complexity
subspace tracking based channel estimation algorithm is very suitable for Mas-
sive MMO systems.
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