
Development of the Embedded Multi Media
Card Platform Based on FPGA

Songyan Liu(&), Ting Chen, Shangru Wu, and Cheng Zhang

Electronic Engineering College, Heilongjiang University,
Xuefu Road 74, Harbin 150080, China
liusongyan@hlju.edu.cn,

{2151302,2141258,2161419}@s.hlju.edu.cn

Abstract. For the validation of eMMC device performance problems involving
the effectiveness of testing and non-real time on parameters controlling, it may
not be possible to obtain the performance data flexibly and efficiently, requiring
consideration of the multi-channel parallel processing and real-time controlling.
This paper presents a development platform for eMMC 5.0 device based on
Zynq-7000. By combining hardware and software design, this platform is able
to support eight eMMC devices working in parallel and get testing information
in real time. Meanwhile, the device driver aims at achieving high performance
data transfer by using DMA.

Keywords: eMMC � Zynq � Parallelism � DMA

1 Introduction

As the storage device widely used in mobile devices, this requires the device having the
characteristics of small volume, big storage capacity, high data rate and short devel-
opment cycle. Embedded Multi-Media Card (eMMC) consisted of the NAND Flash
and a controller is perfect for these immediate needs. One of the major advantages of
eMMC is that it provides the standardized interfaces to the external devices, which
make it easier for developers to develop without dealing with the compatibility of
NAND Flash. Facing with the fast-growing eMMC market, it is necessary to design an
eMMC development platform, which is used to validate the stability, reliability, and
veracity of the product during the development and testing stage.

In recent years, many domestic and foreign researchers have been proposed some
development and testing solutions for flash memory. Kim et al. designed a develop-
ment platform for flash memory solid state disks, which adopt a Xilinx Virtex-4 FPGA
as the main processor [1]. The platform has four NAND Flash memory modules and
supports different SSD architectures. Wei et al. presented a platform for NAND Flash
based Zynq [2]. They combined the programmable logic with a processing system
within Zynq to achieve sequence control, bad block management and error correction.
Fu et al. proposed a test system for eMMC 5.0 devices based on FPGA [3]. They used
Verilog hardware description language to implement the control of eMMC device.
However, the system can only control an eMMC device to send commands at one time.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
X. Gu et al. (Eds.): MLICOM 2017, Part I, LNICST 226, pp. 648–656, 2018.
https://doi.org/10.1007/978-3-319-73564-1_66



Furthermore, there are some researches on the storage performance of eMMC
device. Deng suggested two methods of automatic data transmission synchronization,
with emphasis on eMMC busy/ready controlling and device status returning [4]. Amato
et al. putted forward four eMMC key performance indicators: sequential read,
sequential write, random read, and random write by analyzing the model of controller
[5]. To address the random write performance issue, Byungjo Kim et al. introduced a
way of the background command [6]. Compared with the conventional power-off way,
the random writing capability has gone up by 173% in this method. The studies above
are using different approaches to improve the efficiency of data reading/writing.

In order to validate the eMMC devices’ operation and data reading/writing per-
formance, this paper aims to design an eMMC platform based on the eMMC 5.0
protocol. The remainder of this paper is organized into five sections. Section 2 intro-
duces the related background about eMMC. Section 3 describes the overall architecture
of this platform. Section 4 details the design of software, and the result of the exper-
iment is given in Sect. 5. The Final section concludes the paper.

2 Background

EMMC, a storage card oriented to smart phone and table computer, is made up of
NAND Flash memory and a storage controller. The first version of embedded memory
standard specification was released by the Joint Electron Device Engineering Council
(JEDEC) in 2007. Today, it has already been updated to the eMMC 5.1 version.
EMMC 5.0 supports three data transfer modes: 1-bit, 4-bit and 8-bit. Its maximum data
transfer rate, 400 MB/s in HS400 mode, is the same with eMMC 5.1. So it is with good
graces by manufacturers of mobile device.

All manipulation of eMMC device is based on the protocol. The eMMC system has
five operation modes: boot mode, device identification mode, interrupt mode, data
transfer mode and inactive mode. After power up, if the device received the CMD0
with argument of 0xF0F0F0F0, it would be set in the boot mode. Otherwise, it would
go into device identification mode.

To realize eMMC bus data transmission, the host needs to some special signals,
including command, response, and data. All the commands and responses are trans-
ferred on the CMD line. Each of them begins with a start bit and terminates with an end
bit. The second bit indicated the transmission direction. If the bit is 1, it means this is a
host command, otherwise card response. A 7-bit CRC checksum is used to guarantee
the correctness of transmission.

Furthermore, if a data read-write command is sent, the host sends the data block on
the DAT lines subsequently. If there are no data in these lines, the lines will hold a high
level until data block is arrived. It is important to determine whether the mode is single
block or multiple blocks before executing read and write command. Figure 1 shows
read and write operations. The multiple block transmission can be terminated by the
use of CMD12. A busy signal on the DAT0 line is used to indicate that the device is
writing now. During the standby state, eMMC device could be switched into a sleep
state to save the power consumption.

Development of the eMMC Platform Based on FPGA 649



3 System Design

The eMMC platform consists of three parts: PC client, server application and eMMC
control module. The specific design of this platform is shown in Fig. 2.

The hardware is composed of a Zynq-7000, eMMC chips, power module, network
interface, USB 3.0 port and serial port. The Zynq-7000 chip is mainly composed of
dual-core ARM9 processor and FPGA material. For this structure, not only the diffi-
culty in data interaction between processor with FPGA can be solved, but also it
reduces the system’s power consumption and enhances productivity. It needs to
accomplish the following work: (1) receive commands from the client; (2) control
eMMC chips to complete operation task; (3) calculate the data performance; (4) send
back the response to the client. The response will be returned after the command is

Fig. 1. The read and write operation.

Fig. 2. The overview of eMMC development platform.

650 S. Liu et al.



executed. In order to improve the data processing efficiency, this system is designed to
support eight eMMCs working in parallel.

The client helps users to send commands, acquire response information and check
the error status. If a fatal error occurs, the current processing will stop. This application
is visual and concise so that it is very convenient to be used.

The server takes charge of establishing the connection with the clients. It runs on the
PetaLinux operating system, which runs on the ARM9 processor. The PetaLinux, ori-
ented for the MicroBlaze microprocessor soft cores, has a set of software development
kit for Xilinx FPGAs. Not only does it provide the BSP’s builder, but it also provides a
lot of program templates to design the device driver and application. In this way, it can
simplify the processing of system transplant and shorten the development cycle.

4 Implementation of Software

This section describes the software implementation of this platform in detail. Software
architecture involves client program, server program and block driver. The device
driver plays a key role in the overall system. Figure 3 depicts the software block
diagram.

4.1 PC Client

The main goals of this work are to packet the data exactly, establish reliable network
connection and provide access to error checking. This design provides a user interface
to input commands and arguments flexible. A lookup table is used to set clock fre-
quency and determine the level of error. All of the error message will be printed to the
user. If there is a fatal error, the current task would be interrupted, which achieves the
efficiency of the system. This approach is quite convenient and accurately for a great
number of commands.

Fig. 3. The software block diagram.

Development of the eMMC Platform Based on FPGA 651



Command Parsing. Since each client instruction contains some configuration
parameters, including command index, command argument, data and block size, it is
necessary to packet the instruction data at a specified format. Package data into entries
is the main task of this module, which can be executed when the user inputs a series of
parameters. Depending upon its parameter types, the order is parsed into various forms.
If the command is a read and write command, this module should create the data buffer,
which is used to hold the data file. The parsed commands are merged in a structure and
then transferred to the device.

Message Scheduling. This module is responsible for the communication with the
hardware devices to obtain the response information. Thus, it provides two main
functions: (1) send and receive data; (2) check the returned message so that it can be
monitored implementation of the commands and see whether any error occurred.

To make sure that all the data can be processed in real-time, this design applies a
method: it communicates with the kernel layer directly. Considering the efficiency of
this system, the command entries are transferred in a batch way. In other words, one or
more commands can be transmitted to the device.

4.2 Interface of Application

As the kernel layer cannot establish a network connection over the TCP/IP protocol
easily, it is required to set up the connection at the application level. Following this
design, the server also has a feature that it could establish network connections with
multi-user. As the number of clients request increases, the server’s response rate may
be slow commonly. To solve this problem, this design adopts the I/O multiplexing
technology [7], which could be reduced the consumption of system resources. The idea
of this mechanism is that it monitors the state of all socket descriptors. If there are any
changes, the read event will be triggered [8].

4.3 Device Driver

In order to realize data transmission between ARM and eMMC devices, this research
develops a device driver for the eMMC controller. The software flow diagram of the
device driver is shown in Fig. 4. And the driver performs the following steps.

• Device initialization, requesting an interrupt for the eMMC device interrupt event,
initializing the controller.

• Receiving commands from users.
• Once the command data have been successfully received, the command will be sent

to eMMCs.
• If it read/write command, DMA operation would be started. Then creating

send/write descriptors, loading descriptors, and initiating a DMA transfer.
• Returning the response to the users.

652 S. Liu et al.



Command Execution. The driver invokes the emmct_send_serial_command()
function to complete the controlling of eMMC devices. Because the device contains
specific information in different states, the implementation of eMMC command depends
on the current device state. Given this fact, the state checking module was designed,
which verifies that the next command operation conforms to the current state. On suc-
cessful validation of the device status, the command is allowed to send to the device. The
command execution has been elaborated in the following aspects:

• Disable interrupt before sending the command on the CMD line.
• Set the correct clock frequency according to current command.
• Initiate the command sending.
• Enable the interrupt.
• Check the error status, and then a command execution has completed.

Interrupt Handler. After the command or data has been sent to the eMMC device,
the device generates an interrupt to the controller. Since the interrupt types are various,
the driver should judge what interrupt is raised based on the value of mask interrupt
status. To illustrate the interrupt has done, this interruption mechanism should make an
interruption finished sign at appropriate times. Otherwise, it is considered as a timeout.

This interrupt will read the response from the response registers, and read pending
data from the FIFO. Five types of eMMC response might be resulted, depending on the
type of command. In addition to the R2, the length of other responses all is 48 bits. If a
response error happens, this module might check the specific error message by reading
the interrupt mask register. Figure 5 depicts the architecture of interrupt handler.

Data Read and Write. To transmit data on the DAT lines, two modes of data transfer
can be chosen, single block data and multiple block data transfer. While, there are two
types of multi-block transaction, open-ended multiple block read/write and multiple
block read/write with pre-defined block count. It can change the block numbers by
using CMD23 before the actual read/write command.

Fig. 4. The device driver software model.

Development of the eMMC Platform Based on FPGA 653



In order to improve the efficiency of this system, the DMA based on ring mode
structure is used [9]. In this mode, each descriptor points to two different data buffers. The
buffer1 holds a pointer to the data buffer, and buffer2 is not used in this driver. When the
system needs to read/write data, the only thing it required is sending the command to
eMMCs on each channel. The DMA engine then takes care of the operations of reading
andwriting without the processor’s intervention. However, there are some undesired data
stored in the DMA cache sometimes. If the DMA operation is initiated at this time, a data
reading/writing error might be occurred. To address this issue, this design invokes
the dma_sync_single_for_device() and dma_sync_single_for_cpu()
functions to make the cached entry invalid and ensures the security of the buffer access.

5 Experiment and Result

To verify the feasibility and efficiency, we have been implemented a suite of functional
tests for this system. The application connects to this platform via a network interface.
And we choose eight eMMC 5.0 devices (8 GB) made by Skymedi as test objects. Five
test routines are completed: initialization, bus test, single/multiple block write,
single/multiple block read and erase. Table 1 shows the specific procedure of this
experiment.

Fig. 5. Architecture of interrupt handler.

Table 1. The items of eMMC commands

Test item Command sequence

Initialization CMD0 -> CMD1 -> CMD2 -> CMD3 -> CMD9
Bus test CMD19 -> CMD14
Single/multiple block write CMD13 -> CMD7 -> CMD16 -> CMD13 -> CMD24/CMD25
Single/multiple block read CMD13 -> CMD7 -> CMD16 -> CMD13 -> CMD17/CMD18
Erase CMD13 -> CMD7 -> CMD35 -> CMD36 -> CMD38

654 S. Liu et al.



For the data transfer performance, we can obtain the data transfer rate by calling
emmc_dev_data_perform() function. The total amount of data written in is
1024 MB. After finishing writing, we read the data back again in this experiment.
Table 2 shows the write and read performance of the eMMCs respectively by high
speed SDR mode and HS200 mode.

On the performance side, the eMMC 5.0 device can support the maximum clock
frequency (200 MHz) in the HS400 mode. However, the maximum clock frequency of
this platform can only reach 100 MHz. When the clock frequency is set to 100 MHz,
there is a phenomenon of high frequency harmonic. Within this problem we are still
finding a solution.

6 Conclusion

This paper described a development platform for testing eMMC 5.0 devices efficiently
and timely. Using the client/server architecture, this design is allowed to control and
obtain the command information in real time. The approach of multi-channel parallel
processing is applied that improves the system performance. The system only needs to
send read/write command to eMMCs on each channel, DMA controller then takes
charge of the operations of reading and writing. From the experiment, the feasibility of
the design has been proven and it features the average write speed of 91.39 MB/s and
read speed of 97.11 MB/s in the HS200 mode. However, the issue of clock frequency,
which has the limits of data transfer rate, is needed to improve in the future work.

References

1. Kim, H., Nam, E.H., Choi, K.S., Seong, Y.J., Choi, J.Y., Min, S.L.: Development platforms
for flash memory solid state disks. In: 2008 11th IEEE International Symposium on Object
Oriented Real-Time Distributed Computing (ISORC), pp. 527–528. IEEE (2008)

2. Wei, D., Gong, Y., Qiao, L., Deng, L.: A hardware-software co-design experiments platform
for NAND flash based on Zynq. In: 2014 IEEE 20th International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA), pp. 1–7. IEEE (2014)

3. Fu, N., Li, Y., Liu, B., Xu, H., Zhang, Y.: Realization of controlling eMMC 5.0 device based
on FPGA for automatic test system. In: 2015 IEEE AUTOTESTCON, pp. 251–255. IEEE
(2015)

4. Deng, S.: A new data transfer scheme for eMMC connected subsystems (2014)
5. Amato, P., Caraccio, D., Confalonieri, E., Sforzin, M.: An analytical model of eMMC key

performance indicators. In: 2015 IEEE International Memory Workshop (IMW), pp. 1–4.
IEEE (2015)

Table 2. The data rate for writing and reading

Mode Write Read

High speed 46.45 MB/s 48.02 MB/s
HS200 91.39 MB/s 97.11 MB/s

Development of the eMMC Platform Based on FPGA 655



6. Reddy, A.K., Paramasivam, P., Vemula, P.B.: Mobile secure data protection using eMMC
RPMB partition. In: 2015 International Conference on Computing and Network Commu-
nications (CoCoNet), pp. 946–950. IEEE (2015)

7. Kim, C., Lee, C.: Design of eMMC controller with multiple channels. In: 2016 International
SoC Design Conference (ISOCC), pp. 317–318. IEEE (2016)

8. Ribeiro, I.L.B., Kimura, B.Y.L.: Enabling efficient communications with session multi-
pathing. In: 2014 Brazilian Symposium on Computer Networks and Distributed Systems
(SBRC), pp. 231–238. IEEE (2014)

9. Kavianipour, H., Muschter, S., Bohm, C.: High performance FPGA-based DMA interface for
PCIe. IEEE Trans. Nucl. Sci. 61, 745–749 (2014)

656 S. Liu et al.


	Development of the Embedded Multi Media Card Platform Based on FPGA
	Abstract
	1 Introduction
	2 Background
	3 System Design
	4 Implementation of Software
	4.1 PC Client
	4.2 Interface of Application
	4.3 Device Driver

	5 Experiment and Result
	6 Conclusion
	References


