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Abstract. Bandwidth and energy constraints of underwater wireless sensors
networks necessitate an intelligent data transmission between sensor nodes and
the fusion center. This paper considers a data gathering underwater networks for
monitoring oceanic environmental elements (e.g. temperature, salinity) and only
a portion of measurements from sensors allows for oceanic information map
reconstruction under compressed sensing (CS) theory. By utilizing the spatial
sparsity of active sensors’ data, we introduce an activity and data detection based
on CS at the receiver side, which results in an efficient data communication by
avoiding the necessity of conveying identity information. For an interleave
division multiple access (IDMA) sporadic transmission, CS-CBC detection that
combines the benefits from chip-by-chip (CBC) multi-user detection and CS
detection is proposed. Further, by successively exploring the sparsity of sensor
data in spatial and frequency domain, we propose a novel efficient data gathering
scheme named Dual-domain compressed sensing (DCS). Simulation results
validate the effectiveness of the proposed scheme and an optimal sensing prob-
ability problem related to minimum reconstruction error is explored.
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1 Introduction

Underwater wireless sensor networks (UWSN) [1] are widely applied in various
advanced applications including environmental monitoring, marine fuel exploration,
basic marine sciences and so on. Two main constraints of UWSN enabled by acoustic
communications are the limited available bandwidth and the difficulty of frequently
recharging the batteries of sensors with regard to economic efficiency and technical
consumption. UWSN is believed to be a typical energy-limited and bandwidth-limited
system, and hence a robust and efficient network data aggregation scheme is an
essential foundation for reliable high-performance in large-scale ocean environmental
monitoring networks.

Due to the observation that sensory data are mainly oceanic nature signal which are
sparse or compressible in an appropriate basis, compressive sensing (CS) [2, 3] can be
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applied to provide an efficient data gathering scheme, which allows the aggregation
node reconstruct the information map with relatively small amount of measurements
rather than the raw data from the whole wireless networks [4]. To the best of our
knowledge, authors in [5] are the first attempt to introduce the application of compressed
sensing in network data processing. The appealing reduction in signal processing and
resource requirement has spawned a range of advanced data gathering schemes in
wireless sensor networks. For example, Fazel et al. have develop a networking scheme,
namely Random Access Compressing Sensing (RACS), that combines compressed
sensing and the concepts of random channel access aiming at achieving energy and
bandwidth efficiency by only randomly activating a small part of sensor nodes [6]; Xue
et al. propose a CS-based medium access control scheme for efficient data transmission
in data gathering networks and in-depth analyze the effect of SNR on the accuracy of
transmission symbol recovery [7]. Such been investigated data gathering networks
either require complicated control overhead including identity information of active
sensor nodes or no in-depth eliminate the effect of multiple access interference on data
transmission, and hence there are still imperfections to be improved on.

Recently, a novel PHY layer approach for multi-user detection has been investi-
gated, namely multi-user detection based on compressed sensing [8], that allows for
jointly reliable user activity and data detection for direct random access in a sporadic
communication scenario, where only a small portion of transmitters are active at a
given time instant. For such sporadic transmission, the coordination of node access
enabled by access reservation protocol would consume a significant amount of addi-
tional control overhead. From the view of whole networks’ physical topology, the
location distribution of active sensors can be viewed as one kind of sparse in spatial
domain, and hence compressed sensing can be applied to jointly detect the activity and
data information of active sensors, while at the same time a highly resource-efficient
transmission can be expected. These advantages greatly innovates the development of
multi-user detection based on compressed sensing. In [9], in order to perform a reliable
MUD in the case of different sparsity, the author adopted a switching MUD schemes
from linear minimum mean square error (LMMSE) to Orthogonal matching pursuit
(OMP), which is the most famous of CS reconstruction algorithms. Bringing CS to
MUD attracts many researchers to develop MUD schemes based on CS. So far, the
multi-user detection based on CS has been applied to many wireless systems, see [10,
11] and references therein.

In this work, we concentrate on data gathering underwater sensor network that
collects information of interest for applications such as geographical and environmental
monitoring. We consider that only a portion of active sensors are selected during the
monitoring cycle and simultaneously communicate their sensory data in uplink trans-
mission, i.e., direct random access. This partial sensor selection method makes the
sensory measurements of physical phenomenon which is sparse in frequency domain,
are sparse in the spatial domain. In this paper, we innovatively introduce multi-user
detection based on compressed sensing into data gathering networks, and propose a
dual-dimensional compressed sensing (DCS) for underwater wireless data gathering
networks by successively utilizing sparsity of frequency and spatial domain. The
proposed scheme guarantees high-performance data measurements collection and
allows for the most energy-efficient data gathering networks at the same time.
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2 Preliminaries and Problem Formulation

2.1 Compressed Sensing Theory

Originated as a method for acquiring sparse solutions even for under-determined linear
systems, compressed sensing provides a new paradigm for signal processing and data
acquisition, with which the network data or signals can be efficiently sampled and
accurately reconstructed from much fewer measurements than Nyquist sampling
theory.

Consider an original signal x ¼ ðx1; x2; . . .; xnÞT , which is an n-dimensional vector.
Supposing that x is sparse itself or can be represented over a certain appropriate basis
W ¼ fuigni¼1, where ui 2 R

n. As shown in (1), x can be sparse expressed as the linear
combination of a subset of basis vector:

x ¼
Xn

i¼1

hiui or h ¼ WTx; ð1Þ

where hi is an n� 1 vector which denotes the weights vector, hi ¼ \x;ui [ and W
is the basis matrix. W is an identity matrix when x is sparse vector. We say that vector h
is perfectly s-sparse if it has at most sðs � nÞ non-zero elements. In addition, vector h
is approximately s-sparse means that it has at most s large coefficients while the
remaining coefficients are small. For simplicity and without of generality, s-sparse
signal vector include perfect sparse and approximately sparse in this paper.

According to CS theory, the original vector x can be reduced-dimensional measured
by taking a smaller number (m) of samples by using a linear/convex programming
operator U; hence the reduced-dimensional measurement vector y can be written as

y ¼ Ux ¼ UWh ¼ Ah; ð2Þ

where U ¼ fu1;u2; . . .;umgT , A ¼ UW; s�m� n, and the original vector x is com-
pressed into an m� 1 vector y. Several imposing conditions on measurement matrix U
guarantee the uniqueness of the solution, such as restricted isometry property (RIP),
incoherence and so on [12].

The problem of recovering original vector x from the compressed m-length mea-
surement vector y is equivalent to finding sparsest solution of (2), which can be
expressed as an optimization problem:

min
h

hk kp s.t. y ¼ UWh; ð3Þ

where �k kp¼ ðPn
i¼1 �j jÞ1=p denotes the lp-norm. lpð0\ p � 1Þ guarantees the RIP

condition, and hence original vector x can be accurately reconstructed in highly
probability.
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2.2 Problem Formulation

Consider a typical UWSN architecture for oceanic data gathering with N sensor nodes
deployed in a two-dimensional plane and a fusion center (FC) as shown in Fig. 1.
Specifically, the sensor nodes are uniformly distributed to collect some kinds of ocean
monitoring elements (e.g. temperature, salinity, and ocean current) and report data to
the FC via uplink multiple access channel by one hop. Generally speaking, all sensors
transmit collected information with low cost and low-energy consumption, whereas the
FC can support more complex computational consumption, such as advanced signal
processing. Typically the readings of sensor nodes have spatial correlation due to the
closeness of sensors, and hence the reconstruction of network data can be accomplished
by collecting a portion of sensory data at the FC according to CS theory. The
resource-constraint underwater network necessitates an efficient data transmission
between SNs and FC. Channelization access schemes (e.g. time division multiple
access, code division multiple access) for selected sensors’ communication would
produce a significant coordination overhead and increase the time latency. In view of
the facts, this paper aims to find an efficient data gathering approach for the large-scale
ocean monitoring underwater sensor networks as shown in Fig. 1.

3 Dual-Domain Compressed Sensing

In this section, the dual-domain compressed sensing for data gathering scheme is
proposed and illustrated for the large-scale ocean monitoring underwater sensor net-
works. The framework of the proposed scheme is simple and clear. The proposed
scheme consists of four components: (1) random sensing with probability pa.
(2) multiple access over noisy channels. (3) activity and data detection based on CS
(4) network data recovery based on CS, as shown in As shown in Fig. 2.

Fig. 1. Two-dimension underwater wireless sensor network for ocean monitoring
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3.1 Random Sensing at Sensor Nodes

Due to the fact that most natural phenomenon has a compressible/sparse representation
in an appropriate basis, random sensing is considered in this paper to conserve power
of the sensor nodes, in which case only a portion of sensors participates in sensing. To
model sensor node activity, we adopt a statistical approach, where each sensor node
equips with a simple Bernoulli random generator with a probability pa denoted as
sensing probability. Those sensors who are engaged in data transmission are referred to
as being active, while the other sensors are kept silent and overhearing state to conserve
power energy. This activity probability, that determines the total number of active
sensors Nact in a statistical sense, is assumed to be identical for all deployed sensor
nodes. Since not all sensors signaling in a given time, that is, only a few sensors are
only active on occasion and we call this sporadic transmission [13].

At the beginning of the monitoring cycle, each sensor node performs one inde-
pendent Bernoulli trial to determine which sensors participating sensing. It is note-
worthy that active sensors report data in a time frame which is assumed to be less than
the coherence time of nature phenomenon. According to CS theory, a simple and
efficient measurement matrix, random extractive matrix U, is considered in this paper to
reflect the process of random sensing. U is easily formed by randomly selecting Nact

rows from the N � N identity matrix. The elements in the random extractive matrix
have the following property:

XNact

i¼1

/ij � 1; j ¼ 1; 2; . . .;N

XN

j¼1

/ij ¼ 1; i ¼ 1; 2; . . .;Nact

ð4Þ

3.2 Multiple Access Over Noisy Channel

IDMA is a relatively novel multiple access method, which can be considered as a
special case of CDMA due to use low rate code as spreading and separating users from
specific interleavers [14]. Such a multiple access inherits many distinguished features
of the well-studied CDMA, and further improvement in terms of performance and
spectrum efficiency in UWSN. Therefore, IDMA is attractive for underwater wireless
communication.

Fig. 2. Framework of data gathering based on dual-domain compressed sensing.
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All sensors are equipped with IDMA transmitter. In prior to access channel,
multiple access techniques are adopted in processing the symbol frame to implement
multi-user transmission. Neither access reservation protocols for node coordination or
signing the activity of sensor nodes are assumed in order to avoiding significant
additional transmission. Further, we assume slotted random access for data transmis-
sion and one frame of data are transmitted per slot.

After that, all transmitted symbols are superimposed in the receiver, and the
receiver signal y is modeled as

y ¼
XK

k¼1

HkPkSdk þ n

¼Adþ n:

ð5Þ

For the kth sensor, dk 2 AM
0 is the vector including the transmitted symbols, Each

column of S 2 R
F�M contains the spreading sequence sk, Pk 2 R

F�F describes the
matrix form of user specific interleaver uk , and Hk 2 R

F0�F is channel matrix for the
node-specific block-fading channel hk . Then, the total influence of transmission can be
represented as A 2 R

F0�M , and vector d 2 AL
0 is the stacked vector of all dk , where

L ¼ KM. Further, the noise vector n 2 R
F0
is i.i.d. zero-mean Gaussian distributed, i.e.,

n�Nð0; r2nIÞ. Herein, the symbols of d are taken from the discrete augmented
alphabet A0.

Synchronous reception and perfect channel state information are assumed in system
model (5).

3.3 Activity and Data Detection Based on CS by Utilizing Sparsity
of Spatial Domain

IDMA allows a low-cost chip-by-chip (CBC) iterative multi-user detection strategy to
implement multi-user detection. However, it assumes that active sensors are exactly
known at the receiver, which is challenging in practice.

Due to the fact that each sensor is activated to transmitting measurements with a
sensing probability pa in one time frame, the number of active SNs at one time
instance, Kact, is small, resulting in a sparse signal d in the process of multiple access.
Furthermore, as to sporadic wireless communication, the connected nodes transmit
signals continuously on a frame basis by a low probability. Since sensors are active or
inactive for a whole frame, the non-zeros symbols of the sparse vector d appear in
groups or blocks form in a fixed length. Therefore, this feature is also known as block
sparsity or group sparsity [15]. For the sake of uniform expression in this paper, we
choose block sparsity in the following. The multi-user detection problem can be treated
as a block sparse signal recovery inherently, which naturally incorporate the powerful
tool CS into the joint sensor activity and data detection problem. Therefore, the greedy
group orthogonal matching pursuit (GOMP) [16] is a good choice for CS detection.

In order to enhance the robustness of uplink sporadic IDMA transmission, we
propose a CS-CBC multi-user detector that can accurately detect the sensor activity and
efficiently implement data detection. It should be noted, while classical CS could
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provide jointly recovery the activity and data detection, CS-CBC only need CS
detection to accurately detect positions of nonzero elements of sparse signal d, rather
than the values of non-zero elements.

After the user activity information obtained above, the received signal y, which
compose of the active sensor transmitted symbols modulated by the interleaved
spreading sequences, can be expressed as

y ¼
XNact

n¼1

HnPnSdn þ n

¼A2dactive þ n;

ð6Þ

where dactive only contains the transmitted symbols of active sensors, A2 has the same
form as A in system model (5) except that it only includes interleaved spreading
sequences and channel influence for active sensors. Then, CBC algorithm can be
implemented to realize active data detection.

Differing from the typical application of CS, the goal of detection based on CS is
capable of determining the activity of sensors and recovering the symbol data packets
of active sensors. Activity information of all SNs enables the construction of mea-
surement matrix U, while symbol data packets of active SNs contain the successfully
collected packets utilized for network recovery. Therefore, implementing multi-user
detection based on CS at the FC simultaneously provide two prerequisite information
for network data recovery.

3.4 Network Data Recovery Based on CS by Utilizing Sparsity
of Frequency Domain

In view of the fact the network data acquired from the monitored underwater charac-
teristics are usually are compressible or sparse representation in the frequency domain
(such as sea currents, temperature and salinity), CS theory further enables the possi-
bility of reconstruction a high-resolution information map of the monitoring network
by utilizing sparsity of frequency domain.

Supposed by the end of monitoring, the data measurement vector from the active
sensor nodes dC has been successfully acquired via MUD, which is given by

dC ¼ Uf ¼ UWh; ð7Þ

where U is the random extractive matrix that can be received from the recovered sparse
vector d, h is the sparse representation of original network data f . Therefore, the
network data recovery can be solved by the following optimization problem

min
d

hk k1 s.t. dC ¼ UWh: ð8Þ

CS theory indicates that if the number of measurements exceeds a certain threshold
rs, the original network data f can be reconstructed in high probability by solving the
problem of (8).
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4 Simulation Results

4.1 Performance of the Proposed CS-CBC

We will discuss simulation results for the reliability of the detection in terms of Symbol
Error Rate (SER), define as

SER ¼ pðd̂ 6¼ dÞ: ð9Þ

Here, the SER is given by the probability that the symbol frames of all sensors are
detected incorrectly at the FC and therefore it summarizes both activity and data
detection errors.

We consider an overloaded IDMA system, which result in under-determined
equation system for CS detection. The main simulation parameters are set as follows.
The total number of sensor nodes is N ¼ 100 and the frame length M is set to 50
symbols. In order to separate users, random interleavers are adopted. All sensor nodes
use the same spreading sequence, which is generated based on repetition coding
multiplied by a mask sequence with alternant signs, i.e., [+1, −1, +1, −1, …]. The
spreading length Ns is 64. Therefore, the overloading factor is 156%. BPSK signaling is
always considered.

Figure 3 compare the SER performance of the following four detectors: Conven-
tional CBC, CS detection, CS-CBC and Genie-knowledge CBC assuming the perfect
knowledge of active sensors, where the active probabilities is pa ¼ 0:2. Herein, the
Genie-knowledge CBC algorithm plays a lower bound of the algorithm for sensor
activity detection and data recovery. CS-CBC is superior to CS detection and CBC-AD
and their gaps become larger with higher Eb=N0. Furthermore, it can achieve the
performance of Genie-knowledge CBC under high Eb=N0. This means that CS-CBC
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Fig. 3. SER performance comparison against SNR, where active probability pa = 0.2.
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has perfect knowledge of active sensors due to the reliable performance of CS detection
to positioning non-zeros items and CS-CBC do better data recovery than CS detection.

4.2 Performance of Data Gathering Based on DCS

We consider a UWSN consisting of N sensor nodes in a simple single-path multiple
access underwater channel model with ideal power control. Real ocean meridional
current data of Monterey Bay is experiment subject, which is obtained by the Regional
Ocean Modeling System (ROMS) at 3GMT 05/13/2012. The monitored region is
100 m below the sea surface and ranged over ½�122:8	E;�122:6	E
 in longitude and
½36:6	N; 36:8	N
 in latitude. Considering that the number of active sensors is usually
large in the ocean monitoring sensor networks, the uplink frame will be split into
several subframes and IDMA scheme is operated in each subframe. The main proce-
dure is as following: Firstly, downlink control information included subframe index
and interleaver is broadcasted to all sensor nodes. Secondly, the selected nodes transmit
subframes separated by a guard time to FC. Finally, the FC implement CS-CBC and
OMP algorithm to recovery the network data. The main simulation parameters are
summarized in Table 1.

Ideal power control for each sensor node is adopted and the required power of each
sensor at the FC is P0, the distance between the sensor node and the FC is d (km), and
the carrier frequency is f (kHz). In order to achieve the required BER, the transmitted
power should be P0 � Aðd; f Þ, where

Aðd; f Þ ¼ dc � aðf Þd: ð10Þ

The constant c is usually set as 1.5, and

aðf Þ ¼ 10aðf Þ=10; ð11Þ

where aðf Þ is the absorption coefficient, with an experiential formula as follows:

aðf Þ ¼ 0:11f 2

1þ f 2
þ 44f 2

4100þ f 2
þ 2:75f 2

104
þ 0:003: ð12Þ

Table 1. Simulation parameters

Parameters Value

Data packet length 50 bit
Spreading length 64
Noise power spectral density −100 dBm
Underwater depth 100 m
Carrier frequency 10 kHz
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The reconstruction error Pe is defined as f̂ � f
�� ��

2= fk k2 to evaluate the quality of
network data recovery.

To visually illustrate the DCS scheme for data gathering network, the simulations
for real data are shown in Fig. 4. Eb=N0 is 6 dB at the FC and the sensing probability
pa is 0.3. The simulation result of PER is 0.0913 and hence about of 110 of the 120
random measurements are successfully collected for the network data recovery, leading
to a reconstruction error Pe ¼ 0:11945.

The relationship between reconstruction error Pe and the sensing probability pa is
illustrated in Fig. 5. An interesting phenomenon that the relationship curve presents
downward bending and an optimal sensing probability exists in the turning point is
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observed. Further, the turning point varies with different channel conditions and
appears latter with the increasing Eb=N0. As mentioned above, the sensing probability
pa is negatively correlated with psuc, and positively correlated with Nact. Consequently,
the optimal sensing probability reaches a balance between two influence factor related
to reconstruction error Pe in a given channel condition. The increasing Eb=N0 improves
the psuc, which breaks the original balance and push sensing probability to increase in
order to build a new balance. In addition, the reconstruction evidently deteriorates with
the increase of Eb=N0 because of the high PER. However, higher Eb=N0 consume more
energy, and the average energy consumption per sensor versus Eb=N0 at FC is shown in
Fig. 6. The performance tradeoff between resource requirement and quality of recon-
struction should be taken into consideration in system design.

5 Conclusion

In this paper, we have elaborated the role of activity and data detection based on CS in
data gathering networks in terms of symbol data recovery. The DCS scheme for data
gathering that exploits the spatial sparsity of active sensors’ data and the frequency
sparsity that exists in most natural signals is proposed. The proposed CS-CBC that
combines the benefits of CBC and conventional CS detection guarantees an efficient
data transmission in DCS. Moreover, the influence of the activity and data detection on
network recovery has been illustrated and the performance of proposed DCS scheme
has been simulated in terms of reconstruction error and energy consumption. The
optimal sensing probability problem related to minimum reconstruction error is illus-
trated and should be considered in system design.
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