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Abstract. Gain-phase error is inevitable in direction of arrival (DOA) estima-
tion, it will lead to the mismatch between actual and ideal array manifold.
Therefore, a novel gain-phase error calculation approach in DOA estimation for
mixed wideband signals is provided in this paper. First, the signals are trans-
formed on the focusing frequency. Then peak searching is employed for
determining the far-field sources. Finally, gain-phase error can be calculated
according to the orthogonality of far-field signal subspace and noise subspace,
simulation results manifest the effectiveness of the proposed approach.
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1 Introduction

With the development of array signal processing, more and more DOA estimation
methods are springing up [1-8]. Such as multiple signal classification (MUSIC) [9],
ESPRIT [10], maximum likelihood [11] and so on, all of them can achieve a high
precision and resolution capability under ideal condition. But as a matter of fact, due to
the processing technology and some disturbance, gain-phase error often exists in
hardware, which leads to the deviation between actual and ideal array manifold, then
most DOA estimation methods have deteriorated, so how to calculate this kind of error
is very important.

In recent years, gain-phase error calculation has attracted many scholars: Fried-
lander [12] analyzed its effect to MUSIC algorithm, then approximate expression of the
estimation variance is given; Weiss and Friedlander [13] discussed the first and second
order statistical properties of the spatial spectrum, then deduced the resolution
threshold; Su et al. [14] inferred the expression of spatial spectrum, the relation
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between gain-phase and resolution capacity; Wang et al. [15] concluded the quadric
equation in one unknown of average signal to noise ratio (SNR) resolution threshold
for MUSIC algorithm. All the research have shown the effect of the gain-phase error to
the DOA estimation, they also greatly promoted the practical application of corre-
sponding techniques, but there are rare published literatures in DOA estimation for
mixed signals.

A novel gain-phase error calculation approach in DOA estimation for mixed
far-field and near-field wideband signals (abbreviate as FS and NS) is provided in this
paper. First, the signals are transformed on the focusing frequency. Then peak
searching is employed for determining the far-field sources. Finally, Gain-phase error
can be calculated according to the orthogonality of far-field signal subspace and noise
subspace.

2 Array Signal Model

Define the wavelength of the signal is 4, D is the array aperture, [ is the distance
between the signal and the reference. Generally speaking, if I > > 2D?/4, it will be
in the far-field; if I € (1/2m, 2D*/7), it will be in the near-field. As is shown in
Fig. 1, assume that N; wideband far-field and N, near-field sources impinge onto a
2M + 1-element uniform linear array from directions of 0 = [0y, -, On,,On, +1,
.-+, Oy], the middle sensor is treated as the reference, where N = N; + N,
0 < 6 < =, the space of sensors d equals half of the wavelength of the center fre-
quency, and N, N, is assumed to be known in advance, then array output is

X(fi) = A(h,0)S(f) + E(f) (0 = 1,2,---,J) (1)

Y
5, (1)
6,
[0} [
0 1 m
d

Fig. 1. Signal model
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where J is number of divided narrowband frequency bins, A (f;, 0) is the array manifold

A(f,0) = laps(fi, 01), -, ars(fi, On,), -, ars(fi, On,), ans(fis Ony+1), -, ans(fis Ony), -+, ans(fi, On)]
[Ars(fi), Ans(fi)]

(2)

where Aps(fi) = [ars(fi, 01),-- -, ars(fi, On,),- -, ars(f;, On,)] is the array manifold
of FS, and aps(f;, 0,,) is the steering vector of s, (¢); Ans(f)) = lans(fis On +1), -,
ays(fiy, Ony),- -, ans(fi, On)] is the array manifold of NS, and ays(f;, 0,,) is the
steering vector of s, (¢), here

aFS(fi’ 0111) = [exp(_j2nﬁT—M(0nl))’ ) exp(_jznﬁr—m(0n1))7 ey 1

<oy exp(=i2nfitn(00)), -+ exp(—i2nfitm (6,,))]" ®
and
T (On,) :mgcosenl m=-M,---, —m,---,0,--, m,---, M;
n=1,2--,Np) (4)

is the delay for s, (¢) arriving at the mth sensor with respect to the origin, on the other
hand

ays(fi,0,,) = lexp(—i2nfit_a(0,,)) -+, exp(=2nfit_n(0,,)), -, 1,

: . (5)
-+, exp(—i2nfitm(0n,)), -+, exp(f_]ZnﬁrM(an))]T
according to the geometrical relationship, we can deduce the 7,,(6,,) from Fig. 1
I, — \/lﬁz + (md)* — 21, mdcosb,,
Tn(On,) = (6)
¢
reference Taylor series, Eq. (6) can be transformed into [16]
m*d® 1 md?
Tn(On,) = T cos20,, + Emdcos@n2 T (7)
and
S(f) = [Sks(f), Sns(f)]" ®)

= [Sl(ﬁ)7"'7 Sﬂ](fl')v"'a SNl(ﬁ)a SN1+1(fi)7"'v S"z(fl')f"a SN(fl)]T

here Sps(f) = [S1(f), -+, Su (f)), -+, Sy, (f)]" is signal vector of FS, Sys(f;)) =
[Svy 1(F)s -+ Suy(fi)s -+, Sn(fi)]" is that of NS. E(f;) is the Gaussian white noise
matrix with mean 0 and variance ¢, then corresponding covariance matrix is
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R(G) = X)X ()
= JAG, 0SE)S"(RA"GE 0) + 2 ©)
= Res(fi) + Rus(fi) + ()1
the covariance matrix of FS is Rrs(f}) = LAps(f;)Srs(f;)Shs(fi)ARs(f,), that of NS is

Rys(f;) = ZAns(f)Sns(f)Shs(f)ANs (i)
We can also model the gain-phase error as

W) = diag( (W), Wonlfeos Loy Walf)eo, Wu(B)T) - (10)
where

W) = pm(ﬁ)ei(pm(ﬁ)’ m= —M,--, —m,---,0,---, m,--, M, (11)

is the gain-phase error of the sensor m, p,,(f;), ®,,(f;) are the corresponding gain and

phase errors, and they are independent with each other, so the array output with
gain-phase error is

X'(f) = A'(f, OS(h) + E(f) = WA 0)S(F:) + E(f) (12)

3 Estimation Theory

First, we need to estimate the covariance matrix with gain-phase error

R() = x(@@ @)

Z

1 l H ’ H
= JAG DSOS WA ) + 2 )
= SWEIAG, OSES RA"E, W) + (T

= R;Vs(fi) + R;vs(fi) + Gz(fi)l

where the covariance matrix of the FS is Ry (f;) = 2 W(f)Ars(f;)Srs(f)Shs(fi) x Al
(f)WH(f), that of the NS is Ry4(f;) = %W(ﬁ)ANS(ﬁ-)SNS(f,-)SSS 5 x Ang(F)WH(f).
We can employ some coherent signal subspace methods to transform the received data
on the focusing frequency

J
R'(f) = 3> TR G (14)
i=1
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here T(f}) = Us(fo) (Uy(f;))" is the focusing matrix, Uj(fy) is the signal subspace of
R'(f;), fo is the focusing frequency, then we can found the MUSIC spatial spectrum of FS

1

(ars(fo, 0))"UE(fo)U (fo)s(fo, 0)

_ 1 (15)

alls(fo, OYW(f)Ur(fo) U3 (fo) W (fo)ars(fo, 0)
1

Y

Pyy—r(0) =

where Ug(fy) is the noise subspace of R’(fy), in order to be convenient to the
derivation, we express the gain-phase error with another form

W( ) - [p M( )e](/) M(f p—m(fi)ej(pim(ﬂ)?'“a 17"'7 pm(ﬁ)ej(/)mm)?' ) pM(f) (/)\4 }
(16)

then we can simplify the denominator of the function above

Y a?s(foa OWH(fo)Ue(fo)Ug (fo) W (fo)ars (fo, 0)

= ZaFS(fo, )W) UE(fo)UE (o)W (fo)ars (fo, On,)

n=

Zw“vo { (diag(ars(fo. 0,))"VE()U (o) ding(ars(fo. 0u)) pwih)
WD, ()

(17)

where Dy, 0) = 5 { @iaglars(, 0n)) " U ()UR (o) diaglars(, 0,) . the

n=1
DOA of FS can be solved by minimizing (17). w(fy) is not null matrix, so
wh(fo)D(f;, 0)w(fo) = 0 holds only if D(fy, 0) is singular, then 0y, - -0y, can be
estimated by searching N, peaks of D(fp, 0).
Next, the orthogonality of signal subspace of FS and noise subspace can be utilized

H
(@rs(0n)) Uy = aig(0,)W'UL = Oryoms1-) (18)

it can be transformed into

aps (0, )WHU = wh{ diag(ars(0,,))}" Uy = w'Q(6,) (19)
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here Q(0,,) = {diag(aps(()nl))}HU’, define D as the middle row of Uf, as the
middle row of aps(0,,) equals 1, the middle element of Q(0,,) is D too. Combining all
FS, and let Q(0) = [Q(0), -+, Q(0,,)," -, Q(0O,)], therefore

0,(0) 0,(0)
wHQ(Q) = wH D---D = [wll-la 17 wlz-l] D---D :[Oa"'70]1><(2M+17N)N1
0,(0) 0,(0)

(20)

where w is the first M rows of w, w; is the latter M rows of w, Q | (0) is the first M rows
of 0(0), Q,(0) is the latter M rows of Q(0), define G = [D D], op 1 1_nyy,» W1

and w, will be acquired according to (20), that is

H

i = —(6@0)") 21)

w2 = —(6@00)" 22)

w; and w, is the estimation of w; and w,, ()# means solving pseudo-inverse, then
we have

T

wo= [w], 1, w,] (23)

Thus, estimation of gain-phase error can be calculated, and the number of sensors
and the signals must satisfy 2M + 1 > N; + N,, the method is suitable for
gain-phase error calculation in DOA estimation for mixed wideband signals, so we call
it GPW for short.

4 Simulations

The structure of the array is illustrated as Fig. 1, consider two FS and two NS impinge
on a uniform linear array with 7 omnidirectional sensors from (73°, 85°) and
(40°, 65°) simultaneously, the frequency of the signals limited in 0.9 GHz-1.1 GHz.
The band is divided into 9 frequency bins, here the gain and phase errors are generated
in [0, 0.5] and [—20°, 20°] randomly respectively, 500 Monte-Carlo trials are repeated.
SNR is 6 dB, number of snapshots is 30, Figs. 2 and 3 have shown gain and phase
error estimation of different sensors at every frequency bin, where ith s-A means actual
value of ith sensor, and ith s-E means the corresponding estimation, we can see from
Figs. 2 and 3, GPW can estimate the gain and phase error of the array, especially when
the frequency is near to the center point. As the center frequency corresponds to half of
the wavelength, so it is more precise than the others.
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Fig. 2. Gain error estimation
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Fig. 3. Phase error estimation
5 Conclusion

A novel gain-phase error calculation approach in DOA estimation for mixed wideband
signals is provided in this paper. First, the signals are transformed on the focusing
frequency. Then peak searching is employed for determining the far-field sources.
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Finally, Gain-phase error can be calculated according to the orthogonality of far-field
signal subspace and noise subspace. However, it just applies to uniform linear array, we
will be committed to study the technique for planar array in future.
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