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Abstract. As a high-resolution deep tissue imaging technology, photoacoustic
microscopy (PAM) is attracting extensive attention in biomedical studies. PAM
has trouble in achieving real-time imaging with the long data acquisition time
caused by point-to-point sample mode. In this paper, we propose a sparse
photoacoustic microscopy reconstruction method based on matrix nuclear norm
minimization. We use random sparse sampling instead of traditional full sam-
pling and regard the sparse PAM reconstruction problem as a nuclear norm
minimization problem, which is efficiently solved under alternating direction
method of multiplier (ADMM) framework. Results from PAM experiments
indicate the proposed method could work well in fast imaging. The proposed
method is also be expected to promote the achievement of PAM real-time
imaging.
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1 Introduction

Photoacoustic microscopy (PAM) has been considered as an effective tool for
high-resolution deep tissue imaging in biomedical studies, such as imaging of tumor
microenvironments, brain functions and gene activities [1-5]. In PAM, the lateral
resolution is defined by the overlap of both optical excitation and ultrasound detec-
tion’s foci, which are focused on the same spot, while the axis resolution is defined by
the acoustic time of fight. According to the sizes of optical excitation and ultrasound
detection’s foci, PAM is divided into optical-resolution PAM (OR-PAM) and
acoustic-resolution PAM (AR-PAM) [6]. In conventional PAM, the measured data X is
detected by point-to-point mechanical scanning of ultrasound and optical components
on the target surface to obtain high resolution of deep tissue. This sampling of PAM is
one kind of oversampling (Fig. 1(a)). More sampling points are necessary for higher
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resolution. However, it leads to consuming more sampling time, larger data size and
more requirements for system hardware. The most common way to enhance the res-
olution is to improve the performances of objective and ultrasound transducer, which
will increase the system cost. For example, to increase optical numerical aperture
(NA) of objective can improve resolution for OR-PAM, but it also means that the
penetration depth will be decreased at the same time and the optical scanning devices
should have higher performance indexes [4, 5]. Thus, it’s significant for PAM to
improve the scanning speed with no influence to resolution under limited experiment
condition.
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Fig. 1. (a) Scanning path of the traditional full-sampling mode; (b) scanning path of the sparse
sampling mode

In many studies, it’s shown that most medical images are sparse by themselves or
proper transformation including photoacoustic images [7, 8]. The sparsity of photoa-
coustic imaging has been proven and fully utilized to obtain highest-resolution pho-
toacoustic image by the least amount of sampling data [9, 10]. In particular, the
application of compressive sensing (CS) technology in photoacoustic tomography
(PAT) has achieved remarkable success and received excellent experiment results [11],
but CS application in PAM is rare. What’s more, the conventional sampling of PAM is
one kind of oversampling. We can achieve fast data acquisition by decreasing mea-
surement numbers with sparse sampling method, whose scanning path is shown in
Fig. 1(b). In sparse sampling mode, the random sampling mask A can be generated if
sampling rate (SR) k and sampling point numbers m, n in direction of x, y respectively
are known. Here assume A € R™*" as a 0, 1 matrix, where 1 means the point’s data
needs to be collected while 0 means not. According to the sampling mask A, computer
can plan shortest scanning path to achieve sparse scanning and minimize sampling
time. Therefore, the sparse PAM measured data b € R? is defined as

by = X;;if Aj; =1, 1<i<m, 1<j<n, 1<I<p,p<m X n, (1)

where X € R™*" is final PAM image what we want to recover i.e. the measured data of
conventional PAM and A € R™" is sparse sampling mask.
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In this paper, we propose a method to solve a sparse photoacoustic microscopy
reconstruction problem, which is to acquire the real images from fast-scanning data, i.e.
recover PAM image X € R™*" from compressive measured data b € R”.

2 Method

According to sparse PAM reconstruction problem, we attempt to recover complete
matrix X € R"™*" from measured matrix b € R? which can be approximately regarded
as a part of X. It can be described as a matrix recovery problem, also known as a matrix
completion problem. Recht et al. proved that most matrices X € R"™*" which has
low-rank property can be recovered from b € R? if the entries of A are suitably random
e.g., ii.d. Gaussian [12, 15]. Fortunately, as a result that the low-rank property of
photoacoustic imaging has been verified in recent studies [13], sparse PAM recon-
struction problem can be transformed to the completion problem of low-rank matrix,
which takes low-rank property for a constraint. Thus, sparse photoacoustic microscopy
reconstruction problem is defined as:

min rank(X)

st AX) = b )

where X € R™" is the decision variable, A4: R"™" — R’ is the sampling map, and
vector b is measured.

Due to the problem (1) is a NP-hard problem in general, we can replace rank
(X) with the nuclear norm of X, which is the tightest convex relaxation of rank(X) [14,
15]. Approximating nuclear norm to the rank function, the problem (1) can be trans-
formed into the form as below [16]:

min || X,
SLAWJ) = b, X = I (3)

where [|X]],:= " 6;(X) is the nuclear norm of X which has r positive singular values

i=1
of 61>0,>...20,>0.
To solve the problem conveniently, the problem (3) is transformed to the form of

corresponding augmented Lagrangian function

Ly(X, J, %, ) =111 = e X = ) = EHIX = J[E - G, AW) = b)

4)
+ 2 140) - o3,

where x € R™*", j € R is the Lagrangian multiplier, and p; > 0 and p, > 0 are the
penalty parameters for the linear constraint.
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The solution can be obtained by solving the problem (3) under ADMM [17],
described as follows:

2
Xeor = argminl X, + X - Gt x| (5)
Jisr = argmin — (s, X = J) + S X = JE = G AV) - 0) o
+ 2140 - bl
X1 = X — )1 (Xer1r — Jet1),s (7)
Jest = jk = 72(AWUk+1) — b), (8)

where 7, and y, are the penalty parameters for the linear constraint.
Assume X € R™" and the SVD of X is X = UDiag(o)V’, U e R™, 6 € R’ ,
V € R, For any v > 0, the matrix shrinkage operator S,(-) is defined as [15]

. N i~ o=V, 0g—=v>0
S,(X) := UDiag(6)V", withg := {O, o, , 9)
Obviously, the closed solution of X-subproblem (4) can be described as
1
Jri1 = SL(J]( + ka).]k and x, (10)

. My

On the other hand, nothing the right value of J-subproblem (5) as f{J), a unique
solution of it can obtained by taking partial derivatives with respect to J, i.e.,
of(J)/oJ = 0, described as

(I + (A A = wXerr — xe — A (b + ji), (11)

where I is an identity matrix, and A" is the adjoint of .A. The linear operator equation
can be solved easily by the conjugate gradient method.

Based on the discussion above, we summarize the algorithm for sparse photoa-
coustic microscopy reconstruction problem based on matrix nuclear norm minimization
via ADMM in Table 1, where maxiter is maximum number of iterations, fol is ter-
mination criterion for iteration.

3 Experimental Results

In this section, experiment results on several PAM images for solving sparse PAM
reconstruction problem are reported, which show the efficiency of the proposed method
(Algorithm 1). In order to evaluate the performances of proposed method qualitatively
and quantitatively, four performance indexes are utilized. They are: peak signal-to-noise
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Table 1. Reconstruction algorithm based on matrix nuclear norm minimization via ADMM.

Reconstruction algorithm based on matrix nuclear norm minimization via ADMM
Input: b, u,, u,, %, ¥,,maxiter, tol, k=0, X, =0,J, =0,x, =0,/ =0

for k=0,1,...,maxiter
1. Compute X,,, via(9) withfixed J, and x, ;
2. Compute J,,, via(10) with fixed X,,,,
3. Update x, andj, withfixed J,,, and X,,,;
4.1f HXk+1 -X, H <tol, stop and return X

5. End if;
6. End for;
Output: X=X,

x, and

k+1 ;

ratio (PSNR), structural similarity (SSIM) index, relative error (Rerr) and mean square
error (MSE), respectively.

PSNR = 10+ logio : (12)
2
>0 (Xy — Yy)
i=1j=1
SSIM(X, v) = — Chakty + Clowr + C)
(ufz + w3 + C1)(og + o3 + C2) (13)
XK - x
Rerr = I ||2, (14)
1X1],
m n 2
ZI;(Xi' ;)
MSE = — 7 (1)
mn

where X is the approximate optimal solution of problem (3), i.e. restored image, and Y
is the reference image. uy, py are respectively mean of X and Y, ox and oy are
respectively variance of X and Y and oy is covariance of image X and Y. C; and C, are
constants to prevent denominator from being zero [18].

In our experiments, we obtain two groups of PAM images by full-sampling and
random-sampling PAM system. The first group is PAM images of mouse brain
(resolution: 211 x 211), whose sample rates (SR) are respectively 1.0, 0.6, 0.5, 0.4,
0.3, 0.2, 0.1; another group is of mouse ear (resolution: 954 x 954), whose sample
rates are same to the first group. Figures 2(a)-(d) and Figs. 3(a)—(d) show two groups
of typical experimental results from the method described above. The values of Rerr,
MSE, PSNR and SSIM obtained in different sampling rate by the proposed method are
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summarized in Table 2. As can be seen, when the sampling rate is 0.4, the recovered
images of both two groups have already having relatively good resolution. The PSNRs
between the recovered images and the reference images are over 40 dB and the SSIMs
are 1, which indicate the proposed method has a great effectiveness. It is also worth
noting that less sampling rate means less sampling time.

(@) (b) (©) (d)

Fig. 2. Results from mouse brain images. (a) Full sampling image. (b)—(d) Recovered images by
our method which sampling rates are 0.6, 0.4, 0.2, respectively.

Fig. 3. Results from mouse ear images. (a) Full sampling image. (b)—(d) Recovered images by
our method which sampling rates are 0.6, 0.4, 0.2, respectively.

Table 2. The results in different sampling rate by the proposed method

SR 0.6 0.5 0.4 0.3 0.2 0.1

Group 1 | Rerr 0.0379 | 0.0608 | 0.0927| 0.1340| 0.1930 0.3060
MSE | 0.0047| 0.0075| 0.0114| 0.0165| 0.0237 | 0.0376
PSNR | 47.3873 | 45.3329 | 43.5004 | 41.3871 | 40.3105 | 38.3176
SSIM | 1.0000| 1.0000| 1.0000| 1.0000 | 1.0000 0.9999
Group 2 | Rerr 0.0379 | 0.0608 | 0.0927| 0.1340| 0.1930 0.3060
MSE | 0.0112| 0.0150| 0.0263| 0.0493| 0.0944 | 0.1761
PSNR | 43.5818 | 42.3096 | 40.0256 | 37.1342 | 34.3135 | 31.6086
SSIM | 1.0000| 1.0000| 1.0000| 0.9998  0.9993  0.9970
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4 Conclusion

In conclusion, we present a sparse photoacoustic microscopy reconstruction method to
recover complete PAM images from parts of images. It aims to reduce data acquisition
time and reconstruct the real images from fast-scanning data from fast-scanning data.
An efficient matrix completion algorithm has been proposed to solve the associated
optimization problem. The results from PAM experiments demonstrate the proposed
method could work well in fast imaging, so we expect that the study can be applied in
actual operation and provide a way for the achievement of PAM real-time imaging. For
further study, the case that the image is not sparse at all will be considered.
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