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Abstract. A new class of rateless codes which are able to provide
unequal error protection (UEP) and equal recovery time (ERT) prop-
erties is proposed in this paper. Existing UEP-based LT codes have an
important property termed unequal recovery time (URT), which means
the data with different reliability requirements can be recovered with
different overhead, and it is worth noting that the most important bits
(MIB) also have better recovery time performance. The proposed codes
can recover data with the same overhead and different error performance.
We analyze the asymptotic and experimental error performance of the
proposed codes, and give the comparison between the proposed and tra-
ditional codes, our results show that the new class of UEP rateless codes
are useful for scenarios in which the data have different reliability and
same timeliness requirements.

Keywords: Unequal error protection · Asymptotic analysis
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1 Introduction

LT codes, the first practical codes of the family named rateless codes, were
invented by Luby [1]. The code rate of rateless codes are not fixed, in other
words, the output symbols can be generated as many as needed.

Rateless codes could also provide an important property which named
unequal error protection (UEP). The UEP rateless codes proposed by Rah-
navard in [2,3] by distribute different selection probabilities to input symbols
in different blocks in the encoding process, Sejdinovic etc. construct the UEP
rateless codes by dividing the data into a series windows, and different window
have different encoding times [4]. The mentioned schemes are all based on single
source, Talari and Rahnavard also proposed a coding scheme by using distributed
rateless codes to fit for two source one relay scenario and provide UEP prop-
erty [5,6]. The UEP rateless codes also be used to solve some practical scenarios
where the different data have different reliability requirements.
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All the above mentioned UEP rateless codes have the same property which
named unequal recovery time (URT). As for UEP rateless codes, the data which
have better error performance, they always can be recovered faster, and the oth-
ers are slower. In the ground transmission systems, as each entire encoding and
decoding process only need a very short time slot duration, the URT property
is negligible. Therefore, the URT property always be considered as by product,
but for some scenarios where the duration time of each entire encoding and
decoding process must be concerned, (for example, the deep space data trans-
mission systems), the URT property may influence the user experience. Aiming
to solve this problem, we proposed a new class of rateless codes which can pro-
vide UEP property and the recovery time of each block is nearly same. The
proposed codes could provide UEP property, but as the data in different parts
have different error protection level, these data could be recovered nearly at the
same time, in other words, this cods could provide equal recovery time (ERT)
property. For the proposed LT codes in this paper, the MIB and LIB parts would
be recovered nearly at the same time, then the overall timeliness property would
be better than the mentioned UEP/URT LT codes.

The paper is organized as follows. In Sect. 2, We review the related works,
including the And-Or Tree analysis and the UEP cods [3]. The codes we proposed
which could provide UEP and ERT properties are introduced in Sect. 3, a simple
example and its asymptotic performance analysis are also given. Section 4 shows
the comparison between the proposed UEP/ERT LT codes and the comparative
UEP/URT LT codes by asymptotic and experimental results. And the conclusion
of this paper is drawn in Sect. 5.

2 Related Works

In this section, we review the coding scheme proposed in [3] and analyze the
UEP and URT properties of these codes.

For the UEP property, which means different parts of input symbols would
be decoded with different error rates as there are same parts of output symbols
are received. The URT property means that different parts of input symbols
can be decoded with the same error rate as there are different parts of output
symbols are received.

In [3], the authors interpret the URT as the UEP. As the encoding scheme
which proposed in this paper, the input symbols in different blocks have different
chosen probabilities when encoding an output symbol, the chosen probabilities
for input symbols in each block are different, where the MIB symbols have higher
chance to be selected to generate an output symbol than in LIB.

Consider a given LT code with parameters Ω(x), k, γ, where the k input
symbols can be divided into a series of blocks b1, b2, . . . , bi, . . ., and the number
of input symbols in each block bi is αik, where

∑
i αi = 1. As the encoding

scheme proposed in [3], input symbols in each block have their own selected
probability when generating an output symbol, for the ith block, the selected
probability is qi, then the input degree distribution of block i which denotes by
Λi(x) =

∑
d Λi,dx

d can be calculated as
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Λi,d = (d̄d
i e

−d̄i)/d!, (1)

where d̄i = γqi

∑
d dΩd

αi
. The input degree distribution of block i can be rewrit-

ten as

Λi(x) = ed̄iγ(x−1), (2)

and the input edge distribution can be given as

λi(x) = ed̄iγ(x−1) = e
γ2qi

∑
d dΩd

αi
(x−1)

. (3)

For this encoding scheme, the output degree distributions of each block are
all Ω(x). Therefore, we have the edge distribution ω(x) =

∑
d ωdx

d, where ωd =
dΩd. The error rate of input symbols in each block can be calculated by

yl,i = λi

(
1 −

∑

d

ωd

( ∑

i

qi(1 − yl−1,i)
)d−1

)
. (4)

As the output edge distributions are uniform, the error rate of input symbols in
each block depends on their input edge distributions. As x in (3) is the prob-
ability of the output symbols which could transmit “1” to their neighbors, we
have 0 ≤ x ≤ 1. All the parameters except qi are constant, so the value of λi(x)
monotonically decreases as qi increases. Thus for the ith block, the error rate of
input symbols is lower as qi is larger, whatever the value of overhead γ. In other
words, for a given error rate requirement, the input symbols in this block can be
recovered with a lower overhead than the others. Therefore, in these codes, the
UEP property can be interpret as URT.

3 Equal Recovery Time UEP Rateless Codes

In this section, we describe the proposed UEP rateless codes which provides the
equal recovery time property.

The cause of UEP property can be shown by And-Or Tree analysis. For
a given LT code is encoded uniformly at random, when the decoding process
is finished, the probability of output symbols which could transmit “1” to its
neighbor is pl. Then for an input symbol with degree d, as there are d output
neighbors, the error rate of this input symbol can be calculated as ed = (1−pl)d.

It is not hard to find that, as 0 < pl < 1, ed is monotonically decreases as d
increases. Hence, the input symbols with higher average degree have better error
performance than the others.

Then we consider the recovery time of each input symbol for the given LT
code, as the definition of the BP decoding process for LT codes. Each input sym-
bol can be recovered only if it is a neighbor of an output symbol with degree 1.
Consider a moment in which the error rate of the input symbols is el, then for an
output symbol with degree d, the probability this output symbol could recover
one of its neighbors is (1− el)d, as this probability is monotonically decreases as
d increases, we could give the following hypothesis: The input symbol connected
with output symbols with lower degrees have a higher chance to be recovered
earlier.
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3.1 Proposed Encoding Scheme

Consider a given LT code with parameters Ω(x), k, γ, where k input symbols
can be divided into a series blocks b1, b2, . . . , bi, . . .. The number of input symbols
in each block bi is αik, where

∑
i αi = 1. To obtain UEP property, all the prior

schemes use different selection probabilities or distribute degree distribution for
input symbols in different block, these methods make the input symbols in dif-
ferent block have different input degree distribution and different average degree,
so that the input symbols can perform different error rate. In these methods, the
input symbols with higher average degrees have higher chance to be connected
with output symbols with lower degree, and also provide URT property.

Aiming to obtain UEP LT codes without URT property, let Q = (qi,d) be a
probability matrix with size I × D, where element qi,d denotes the probability
that the input neighbor belongs to the ith block of an output symbol with degree
d, and

∑
i qi,d = 1.

Consider the ith block, the total number of the edges connected with it Ei

can be calculated as Ei =
∑

d γkdΩdqi,d.
Then the input degree distribution Λi(x) of the block i can be calculated as

Λi,d =
(

Ei

d

)( 1
αik

)d(αik − 1
αik

)(Ei−d)

, (5)

if exist αik → ∞, and the average degree of input symbols is denoted by d̄i,
where d̄i = Ei/αik, Eq. (5) can be also rewritten as shows in (1) and the input
edge distribution of this block can be calculated as

λi(x) = ed̄iγ(x−1) = e
γ2 ∑

d dΩdqi,d
αi

(x−1)
. (6)

The expression of the output edge distribution of the ith block ωi(x) =∑
d ωi,dx

d as ωi,d = (dΩdqi,d)/(
∑

d dΩdqi,d), as λi(x) and ωi(x) are obtained,
then we make the And-Or tree analysis for the given LT code. Following with
the and or tree theorem which proposed in [9], for block i, the error rate of input
symbols in this block can be calculated by yl,i, and

yl,i = λi

(
1 −

∑

d

ωi,d

( ∑

i

qi,d(1 − yl−1,i)
)d−1

)
(7)

= e
− γ2 ∑

d dΩdqi,d
αi

(
∑

d ωi,d(
∑

i qi,d(1−yl−1,i))
d−1)

.

Considering the ith block and assuming the input symbol in this block have
higher level reliable requirement, we should make the average degree of the input
symbols in this block larger than others, which means d̄i = max{d̄1, d̄2, . . . , d̄I},
as the input symbols also need to be recovered at the same time with the others,
then the series qi,d should satisfy the following conditions: for a certain degree
value d̂, where d̂ is not too small, if d < d̂, qi,d = αi, and if d ≥ d̂, qi,d > αi, thus
the average degree of the input symbols in the block i is larger than the others
and for the lower degree output symbols, the probability of them choosing an
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input symbol in the ith block is equal to the others. Hence, the input symbols
in the block i have better error performance than the others and the recovery
time diversity is negligible.

3.2 A Special Case with 2 Blocks

For simplicity, consider a simple example with only 2 blocks, α1 = 0.1 and
α2 = 0.9. The output degree distribution is Ω(x) = 0.007969x1 + 0.493570x2 +
0.166220x3+0.072646x4+0.082558x5+0.056058x8+0.037229x9+0.055590x19+
0.025023x64 + 0.003137x66, which is proposed in [15]. The input symbols in the
first block are more important than which in the second block.
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Fig. 1. Asymptotic UEP performance of the given LT code with 2 blocks.

As the And-Or tree iterative expression is given by (7), we can show the
asymptotic performance of an given LT code to provide UEP and ERT property.
For 1 ≤ d ≤ 66, there exist qi,d = αi, then the error rate of the symbols in each
block are equal. The performance of this condition is shown as the curve “EEP”
in Fig. 1. Then make q1,64 = 0.5 and q1,66 = 1, the asymptotic performance of the
given code can be shown as the curves “MIB-1” and “LIB-1”, the input symbols
in block 1 are most important bits (MIB), and the others are less important
bits (LIB), as the MIB have been distributed with higher average input degrees,
then the error floor have better performance than the LIB, and the beginning of
error floor for both MIB and LIB are nearly with the same overhead. Therefore
the input symbols in blocks 1 and 2 with the UEP and the equal recovery
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time (ERT) properties. As the block with higher average degree have better
error performance than the lower, then let q1,64 = 0.4 and q1,66 = 0.8, and the
asymptotic performance of this case is shown as the curves “MIB-2” and “LIB-
2”, it is easy to find the difference between the error floor region of case 1 is
larger than case 2. Then we can give the following lemma.

Lemma 1. The difference of the error performance between MIB and LIB would
increase as the difference of the average input degree between MIB and LIB.

3.3 Asymptotic Performance Analysis

Here we should analyze the relationship between the error rate and recovery time
of the proposed coding scheme. Consider the given LT code, as there are n = γk
output symbols that are received, then for an output symbol with degree d,
assume the And-Or Tree iterative process could convergence at the Lth round,
then the probability this output symbol could recovered an input symbol is
(
∑

i qi,d(1−yL,i))d−1, as
∑

i qi,d = 1 and 1−yL,i < 1, then
∑

i qi,d(1−yL,i) < 1,
for this reason, this probability monotonically decreases as d increases.

Then consider the error rate of the ith block yL,i, as this probability is
monotonically decreases as the overhead γ increases and exist 0 ≤ yL,i < 1,
assume there exists an overhead Γ , which is the beginning of the error floor, if γ <
Γ , 1−yL,i << 1 and cannot be ignored. Therefore for an output with degree d, if
d is very high, the probability this output symbol could recover an input symbol
(
∑

i qi,d(1 − yL,i))d−1 is infinitesimal of higher order of probabilities for output
symbols with lower degree. As a result, this probability could be ignored. In other
words, nearly all the input symbols which have been recovered are recovered by
output symbols with lower degree. As for each block, the probabilities input
symbols covered by output symbols with lower degrees are the same. Thus if
γ < Γ , we have the following yL+1,1 ≈ yL+1,2, which means as the overhead is
less than Γ , the input symbols in both 2 blocks have the same error rate.

If γ ≥ Γ , exist 1 − yL,i → 1, then for the output symbols with high degree
d, (

∑
i qi,d(1 − yL,i))d−1 is not very less and cannot be ignored, then as q1,d >

q2,d, we have the following inequality yL+1,1 < yL+1,2, which means that if the
overhead is larger than Γ , the input symbols in first block have better error rate
performance than the others in the second block.

4 Experimental Results

In this section, we will compare the performances of the comparative UEP LT
codes [3] and the proposed codes.

For simplicity, we choose the number of input symbols to be k = 1000, then
the mentioned degree distribution proposed in [15] and design for the codes
with k = 65536 is not suitable. For this reason, we design a robust degree
distribution for LT codes with k = 1000 and make some adjustments as following
Ω(x) = 0.0782x + 0.4577x2 + 0.1706x3 + 0.0750x4 + 0.0853x5 + 0.0376x8 +
0.0380x9 + 0.0576x19.
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For the comparative UEP LT codes, q1 = 0.2189 and q2 = 0.7811, for the
proposed UEP LT codes, the select probability is shown in Table 1.

Table 1. Selection probabilities for 2 blocks when generate an output symbol with
different degree

Degree 1 2 3 4 5 6 7 8

Block 1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.5

Block 2 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.5

Figures 2 and 3 show the asymptotic error rate performance of the compar-
ative UEP LT codes and the proposed codes. For the comparative codes, the
MIB symbols have better recovery time performance than the MIB symbols of
the proposed codes, and the LIB symbols with worse recovery time performance
than the LIB symbols of proposed codes. For the scenarios in which only MIB
symbols have the requirement to be recovered, then the comparative codes have
better recovery time performance than the proposed. But if all the symbols have
to be recovered, then the proposed code have better recovery time performance
than the comparative codes.
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Fig. 2. Asymptotic UEP performance comparison of the given LT codes in log scale.

Figures 4 and 5 show the experimental error rate performance comparison
between the comparative UEP LT codes and proposed UEP LT codes. As men-
tioned before, the number of input symbols is k = 1000 and the simulation
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Fig. 3. Asymptotic UEP performance comparison of the given LT codes in linear scale.
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Fig. 4. Experimental UEP performance comparison of finite-length LT codes in log
scale.

times is 1000. These two figures show the error performance of the comparative
and proposed UEP LT codes in both the log and linear scales. The finite-length
experimental results show the same as the asymptotic results, which means for
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Fig. 5. Experimental UEP performance comparison of finite-length LT codes in linear
scale.

the proposed codes the recovery time of both two blocks are nearly the same.
But it is worth noting that there exists a difference between the asymptotic
and finite-length experimental results, which is although the asymptotic results
shows the error performance of comparative and proposed codes. The experi-
mental error performance of these codes are not the same both for MIBs and
LIBs. This is because the number of the input symbols is finite, although the
overhead γ is large enough, the error rate cannot be considered as infinitesimal,
and the probability that an output symbol with higher degree could recover one
of its neighbor also cannot tend to 1. And the source of the errors between the
asymptotic and finite-length experimental results is the calculated error of the
And-Or Tree analysis.

5 Conclusion

In this paper, we proposed a new class of UEP LT codes which provide the ERT
property. We derive the asymptotic error performance of the proposed codes, and
we also analyzed the error performance by using experimental results. The results
shows that we can use these codes to make the data with different reliability
requirements to be recovered with the same overhead. In other words, these
symbols could be recovered at the same time. For applications where the duration
of each encoding and decoding process must be concerned, if all the data have
timeliness requirements, the overall timeliness property of the proposed codes
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would better than the comparative ones. This means that the overall decoding
overhead of the proposed codes would less than the comparative codes.
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