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Abstract. In recent years, several correlation tracking algorithms have been
proposed exploiting hierarchical features from deep convolutional neural net-
works. However, most of these methods focus on utilizing the CNN features for
target location and neglect the changes of target scale, which may import error to
the model and lead to drifting. In this paper, we propose a novel scale-variable
tracking algorithm based on hierarchical CNN features, which learns correlation
filters to locate the target and constructs a target pyramid for scale estimation. To
evaluate the tracking algorithm, extensive experiments are conducted on a
benchmark with 100 video sequences, which demonstrate features exploited
from different CNN layers are well fit to estimate the object scale. The evalu-
ation results show that our tracker outperforms the state-of-the-art methods by a
huge margin (+14.6% mean OS rate and +14.3% mean DP rate).

Keywords: Correlation tracking � Scale estimation � CNN features

1 Introduction

Object tracking is a fundamental problem in computer vision with several applications
such as video surveillance, medical diagnosis and human-computer interactions.
However, the interference factors like illumination, occlusion, scale variations and
abrupt motion make visual tracking still a challenging problem.

Many exiting tracking algorithms utilize hand-crafted features as target descriptors
[1, 2], but recent years deep Convolutional Neural Networks (CNNs) features have
demonstrated great success on object presentation. Thus recent algorithms utilize CNNs
features to train correlation filters to predict target position [3, 4]. However, these
algorithms do not take object scale variation into account and the error would stimulate
when the target undergoes scale changes, which would eventually lead to drifting or
tracking failure. This issue is the well-known stability-plasticity dilemma. In this paper,
we effectively alleviate this dilemma by integrating target location and scale estimation.
We generate a translation template using correlation filters for target location and scale
models to construct a target pyramid for scale estimation. The scale model utilizes the
predicted target position to search for the optimal scale, and the estimated target size in
return helps to generate a more stable translation model for target location.

Except for scale variation, there are other video attributes would affect tracking
performance. However, most of the existing methods using HOG features to construct
the target pyramid, while CNN features are prevailing in high-level visual recognition
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problems because of the robustness against attributes like motion blur or illumination
variation. We also find that hierarchical CNN features retain semantic information and
spatial details, which are both needed in modeling the target. With these observations,
we propose to utilize hierarchical CNN features to build the target pyramid. Moreover,
we conceive a new approach to extract scale features in the target pyramid by using a
CNN to scan the image computing a large feature map, which effectively reduce
computational load and demonstrate great success.

We make the following three contributions. First, we alleviate the stability-
plasticity dilemma by integrating target location with object scale estimation. A target
pyramid is constructed centered around predicted target location to determine the object
scale, and the translation template is updated considering estimated object size to locate
the target position. The integrating tracking strategy effectively reduces tracking drifts
and remarkably improves the performance in videos with scale variation. Second, we
innovatively propose to utilize hierarchical CNN features to generate the target pyra-
mid. We extract every scale features in target pyramid with a scan from the CNN.
Features from different layers of a CNN retain spatial details and sematic information,
which are both helpful to encode scale models robust against motion blur and illu-
mination variation. Third, we conduct extensive experiments on a large-scale bench-
mark dataset with 100 video sequences [5]. The tracking results demonstrate the
effectiveness of our proposed accurate scale-variable tracking algorithm (AST).

2 Related Work

Heriques et al. first exploit circulant structure of training samples and propose to
transfer correlation filters into the Fourier domain with CSK method, which reaches a
speed of about 250 frames per second [6]. Furthermore, the KCF tracking algorithm
uses HOG features other than illumination intensity features and improves the per-
formance of CSK [7]. In [8], Bolme et al. learn a minimum output sum of squared error
filter on gray-scale images, using intensity features to represent the object.

Recent years deep CNNs have improved state-of-the-art performance in many
computer vision tasks, and some researchers attempt to explore the usage of CNNs in
visual tracking. Ma et al. develop a correlation tracker based on hierarchical features
from a deep CNN. Due to its coarse-to-fine translation estimation strategy, the HCF
tracker can locate the target precisely. Qi et al. combine weak CNNs based trackers into
a single stronger tracker [4]. However, these trackers do not take target scale changes
into account and cannot perform well when target undergoes scale variation.

For scale estimation, Danelljan et al. propose to construct target pyramid around the
object, and their fast scale tracking algorithm with HOG features performs well in
overlap success rate with a considerable speed [9]. Ma et al. learns a multi-level cor-
relation filters to estimate target scale, but they do not use estimated scale to improve
positioning accuracy [10]. In this paper, we exploit hierarchical features for different
CNN layers to build a target pyramid and train two models separately for predicting
position and scale estimation. We conduct extensive experiments on large-scale
benchmark datasets, and the results demonstrate the effectiveness of our algorithm,
especially when tracking sequences with scale variation, motion blur and deformation.
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3 Proposed Algorithm

3.1 Correlation Tracking

Let x 2 R
M�N denotes feature vector of size M � Nð Þ. Each shifted sample xm;n,

m; nð Þ 2 0; 1; � � � ;M � 1f g � 0; 1; � � � ;N � 1f g has a Gaussian Function label of

y m; nð Þ ¼ exp � m�M=2ð Þ2 þ n� N=2ð Þ2
� �

=2r2
� �

, where r is the kernel width.

A correlation filter w is generated by solving following minimization problem:

w ¼ arg min
w

X
m;n

w � u xm;n
� �� y m; nð Þ2�� ��þ k wk k22 ð1Þ

where u xm;n
� �

denotes the mapping to a kernel and k is a regularization parameter.
Henriques et al. [6] exploit the circulant structure of training samples xm;n and

transform the minimization problem in (2) to compute the coefficient a in
w ¼ P

m;n a m; nð Þ � u xm;n
� �

. And a can be computed in frequency domain:

A ¼ F að Þ ¼ F yð Þ
F u xð Þ � u xð Þð Þþ k

ð2Þ

F �ð Þ indicates the Fourier transform. The position of target in new frame is determined
by searching for the location of the maximal value of correlation response map.

3.2 Scale Estimation

According to [9], let N be the number of scales with a scale factor of a. For every
n 2 � N � 1ð Þ=2; � � � ; N � 1ð Þ=2f g we extract image patch In of size Sn ¼ an � h;w½ �
centered around the target, where h;w½ � is the target size in previous frame. For each
image patch In we extract CNNs features then compute response map pn and find the
maximal value of each pn. The optimal target scale for currant frame is determined by:

S ¼ Sn ¼ argmax
n

pnð Þ ð3Þ

Note that we train two correlation filter Rt and Rs separately for target location and
scale estimation. And Rt incorporates both target and surrounding context information
because this information can effectively discriminate the target from background [11].
In contrast, Rs only depend on the target size for robust scale estimation.

3.3 Deep CNN Features

Several CNN models, such as AlexNet, R-CNN, CaffeNet and VGG-Net have been
designed and demonstrate great success in large-scale image classification and object
recognition tasks. According to Ma et al. [3], the features learned from latter CNNs
layers encode more semantic information and earlier layers retain higher spatial reso-
lution, which are both needed in tasks of target location and scale estimation.
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Therefore, we propose to utilize hierarchical features from VGG-NET-19 [12] for
translation template and scale models.

According to traditional method, we must first crop out windows of every scale in
target pyramid and then obtain hierarchical features using a CNN. It means that we
need to repeat extracting CNN features every frame. Since the process of forward
propagation of a CNN requires large amount computing time, and these scale features
retain many repeating information. Based on these observations, we propose to use
CNN to scan the whole image and then gain all scale features at once. We first use
target pyramid to compute the size of searching window adjusted by previous target
size, then we crop out a window from the image and gain its CNN feature maps, finally
we extract features of every scale in target pyramid from the large feature maps at once.

3.4 Model Update

In our proposed algorithm, we train two models Rt and Rs separately for target location
and scale estimation. Since the target appearance would change throughout a sequence,
we update the models every frame by a learning rate g:

~x ¼ ~xt�1 þ g~xt ð4Þ

A ¼ At�1 þ gAt ð5Þ

where t is the frame index. Notice that we update Rt and Rs every frame using (4) and
(5) with the same learning rate. We predefine a threshold ns and stably update models
only when the difference between the response map’s maximal value of previous frame
and current frame is less than ns.
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4 Experiments

4.1 Implemental Details

The main steps of the proposed algorithm are presented in Algorithm 1. We set the
regulation parameter of (1) to k ¼ 10�4. The number of scale space in target pyramid is
set to S ¼ 21 with scale factor of 1.03. The learning rate in (4) is set to 0.01. The
threshold of updating target scale is set to ns ¼ 0:1. We run our implementations in
Matlab on HP OMEN 15-AX000 with an Intel I5-6700HQ 2.6 MHz CPU, 4 GB RAM
and a GeForce GTX960 GPU card. The GPU card is only used to extract CNN
features.

4.2 Comparisons with State-of-the-Art Trackers

We compare our tracker with top 5 state-of-the-art tracking algorithms that are pro-
vided in OTB-100 [5]. These algorithms can be divided into three typical categories,
(i) correlation tracker (CSK [6], KCF [7]), (ii) tracking by single classifier (MIL [13],
Struck [14]), (iii) tracking by multiple online classifier (TLD [15]).

Quantitative evaluation. Figure 1 and Table 1 presents the tracking results on
OTB-100. We highlight the best value in Table 1 by bold. Among all 5 trackers, the
KCF tracker achieves the highest DP rate of 69.0%, OS rate of 54.6% and CLE of 44.6.
And our algorithm outperforms KCF with raises of 14.3% DP rate, 14.6% OS rate and
reduction of 21.2 CLE. Note that our tracker runs in a speed of 3.8 frames per second
on OTB-100 [5], because the forward propagation process of CNNs has a high com-
putation load.

Fig. 1. Distance precision and overlap success plot over OTB-100 using one-pass evaluation
(OPE)

Table 1. Comparisons with the state-of-the-art trackers on 100 benchmark sequences

Ours CSK [6] Struck [14] MIL [13] TLD [15] KCF [7]

DP rate (%) 83.3 52.1 64.0 44.7 59.7 69.0
OS rate (%) 69.2 41.7 52.1 33.5 50.2 54.6
CLE (pixel) 23.4 305 47.1 72.1 60.0 44.6
SPEED (FPS) 3.77 248 9.84 28.0 23.3 207
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Attribute-based evaluation. To further analyze robustness of the proposed algorithm
when tracking in various scenes, we evaluate the performance of our algorithm under
different video attributes and show the results in Fig. 2. As revealed in Fig. 2, our
approach outperforms other methods in all the six tracking challenges. Especially, AST
shows its great superiority when tracking the sequences with scale variation, motion
blur and illumination variation. The hierarchical features from CNN retain spatial
details and semantics, which are both useful for discriminating target from background
in fast motion and motion blur sequences. Meanwhile, target pyramid constructed
centered around the object effectively predict target scale and stable update strategy
helps to generate robust models in videos with scale variation.

Qualitative evaluation. We report tracking results of 5 sequences from 6 trackers in
Fig. 3. The CSK tracker learns a kernelized correlation filter for tracking, but the
intensity features make the tracker drift when target undergoes rotation, fast motion and
partial deformation (Toy, Tiger1, DragonBaby and Skiing). The KCF tracker improve
the performance of CSK by using HOG features, but HOG features cannot well dis-
criminate targets in cluttered background and fast motion (DragonBaby and Skiing).
The Struck method use structure output to alleviate sample ambiguity, but the HOG
features cannot handle large appearance changes and it does not perform well in
rotation, deformation and background clutter (Tiger1, DragonBaby and Skiing).
The MIL method use multiple instance learning to find positive samples to train the
detector. But the insufficient positive samples result in tracking drift caused by fast
motion, illumination variation and partial deformation (Toy, Car4, Tiger1, DragonBaby
and Skiing). Meanwhile, the TLD method cannot sufficiently exploit semantic infor-
mation and spatial details, and it prone to drift or even fail to re-detect when comes to
fast motion, deformation and partial occlusion (Toy, Tiger1, DragonBaby and Skiing).

Fig. 2. Overlap success plots over six tracking challenges
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There are mainly 3 reasons why the proposed AST tracker performs favorably
against the other 5 algorithms. First, we exploit features from different CNN layers to
build a target pyramid. The hierarchical features retain both spatial details and semantic
information, which are both necessary for target description. Second, we combine
correlation tracking with scale changes to alleviate the stability-plasticity dilemma and
effectively improve tracking performance. Third, we stably update target scale to gain a
robust model and effectively alleviate tracking drifts. As a result, our proposed algo-
rithm effectively handle all the 5 videos.

4.3 Component Analysis

We further implement three algorithms on benchmark dataset [16] with 50 videos to
demonstrate the effectiveness of the proposed algorithm. Except the AST, we generate
the ATCNN tracker training correlation filters for target location like AST but remove
the target pyramid. Also, we implement the ATHOG tracker training correlation filters
and target pyramid both using HOG features. The results are reported in Fig. 4.

As shown in Fig. 4, ATHOG preforms the worst among 3 trackers. Because the
target pyramid is constructed centered around the predicted target position, the effec-
tiveness of scale estimation does closely depend on the accuracy of target location.
And HOG cannot well describe target appearance in different scenarios. Compared

AST KCF               CSK              Struck MIL              TLD

Fig. 3. Qualitative results of AST, KCF [7], MIL [13], CSK [6], Struck [14] and TLD [15]
methods on five challenging sequences (Toy, Car4, Tiger1, DragonBaby and Skiing)
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with AST, the ATCNN tracker neglects target scale changes and trains correlation
filters with a fixed- size window. AST uses hierarchical CNN features generating target
models with the consideration of scale variation, raising the DP rate to 89.4% and OS
rate to 76.9%.

5 Conclusion

In this paper, we propose an effective algorithm for accurate scale-variable tracking.
The integrating of target location and scale estimation successfully alleviates the
stability-plasticity dilemma caused by scale variation. Meanwhile, scale models trained
by hierarchical CNN features remarkably improves the performance in tracking videos
with motion blur and illumination variation. Extensive experiment results on a
large-scale benchmark demonstrate the great success of the AST tracker.
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