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Abstract. Current stereo matching methods can be divided into 1D label
algorithms and 3D label algorithms. 1D label algorithms are simple and fast, but
they can’t aovid fronto-parallel bias. 3D label algorithms can solve
fronto-parallel bias. However, they are very time-consuming. In order to avoid
fronto-parallel bias efficiently, this paper introduces a new global depth refine-
ment based on patches. The method transforms the depth optimization problem
into a quadratic function computation, which has a low time complexity.
Experiments on Motorcycle imagery and Wuhan university imagery verify the
correctness and the effectiveness of the proposed method.
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1 Introduction

Stereo dense matching has been attracting increased attention in the photogrammetry
and computer vision communities for decades [1]. According to the assignments of
every pixels, stereo matching methods can be divided into 1D label methods and 3D
label methods. 1D label algorithms assume fronto-parallel planes and assign one label
for every pixel. 3D label algorithms assign three labels (disparity and normal direction)
for every pixel [2]. The newest rank in Middlebury Benchmark show that there are no
significant advantages on matching accuracies for both kinds of matching methods, as
shown in Table 1. PMSC [3] and MeshStereoExt [4] belong to 3D label methods.
LW-CNN [5], NTDE [6] and MC-CNN-arct [7] belong to 1D label methods.

Table 1. Rank in middlebury stereo version 3 (11/01/2017).

Matching algorithm Rank Running time Weight avg. Running environment

PMSC 1 599 s 14.8 GPU + 1 CPU @4 GHz
LW-CNN 2 314 s 14.9 GPU + 1 CPU @4 GHz
MeshStereoExt 3 161 s 15.6 GPU + 8 CPU
NTDE 4 152 s 16.2 GPU + 1 CPU @2.2 GHz
MC-CNN-arct 5 150 s 17.1 GPU + 1 CPU
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1D label algorithms are usually simple and fast, and they can acquire disparity
image directly. According to the cost aggregation, 1D label algorithms can be divided
into semi-global matching (SGM) [8], image-guided matching [9, 10] and global
matching [11]. However, 1D label methods assume fronto-parallel planes and produces
fronto-parallel bias in slanted planes, as shown in Fig. 1. Figure 1(a) shows the original
reference image. The surface of the lamp is a typical slanted plane. Figure 1(b) shows
the corresponding ground truth. Figure 1(c)–(g) represent the matching results of
image-guided matching (IG) [10], SGM [8], Graph Cut (GC) [11], INTS [12] and
NTDE [6], respectively. All of above algorithms are 1D label algorithms. The
fronto-parallel bias in Fig. 1(c)–(g) influences the visualization of 3D reconstruction.

PMSC is a 3D label algorithm. 3D label algorithms penalize the angular difference
between neighboring tangent plane normals, thus they can avoid fronto-parallel bias in
slanted planes, as shown in Fig. 1(h). However, 3D label algorithms are time con-
suming, which is not suitable for large scale reconstruction.

This paper proposes a new global depth refinement based on patches (GDRP). It
can remove fronto-parallel bias efficiently. The contributions of this paper are as
follows:

(1) Traditional 3D label algorithms transform matching into a NP-hard problem,
resulting in a high time complexity. The proposed GDRP transforms the depth
optimization problem into a quadratic function computation, which is simple and
fast.

(2) The proposed GDRP can refine not only disparity image, but also DSM/DEM
products. Disparity and elevation are also called depth in this paper.

(3) The proposed GDRP can remove fronto-parallel bias and obtain continuous,
smooth depths without changing the original matching accuracy.

(a) Original Image (b) Ground Truth (c) IG (d) SGM

(e) GC       (f) INTS     (g) NTDE     (h) PMSC

Fig. 1. Results of different matching methods in slanted planes.
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2 Related Work

The current stereo matching algorithms consist of four steps: (1) cost computation,
(2) cost aggregation, (3) disparity computation, and (4) disparity refinement [1]. 3D
label algorithms mainly refine cost computation and cost aggregation.

Traditional cost computations assume regular support window with a constant
disparity. In practice, the assumption is unlikely to hold in slanted planes. So far,
slanted support window based cost computation can be divided into initial matching
based cost computation, CNN training based cost computation and Patch Match based
cost computation. Initial matching based cost computation adopts 1D label methods to
achieve initial matching results quickly, and then changes the support window adap-
tively, according to the initial matching [13]. CNN training based cost computation
[14] uses numerous examples to train a convolutional neural network (CNN). During
training, affine windows are used for matching in slaned planes. Patch Match based
cost computation [15, 16] adopts PatchMatch [17] method which can directly assign an
approximate best 3D label by random sampling for each slanted support window.

The challenge of the cost aggregation is how to perform global optimization in the
infinite three dimensional label space of each pixel. The cost aggregation of 3D label
methods can be divided into initial matching based cost aggregation and direct cost
aggregation. Initial matching based cost aggregation [18–23] uses window matching or
1D label algorithms to achieve initial matching results quickly. The initial matching
results are approximate to the ground truth. Then, higher order smoothness constraints
are used to optimize the initial matching results iteratively. The direct cost aggregations
can achieve accurate matching results without initial matching [3, 4, 24–27]. They
define a NP-hard global energy function and use PatchMatch [17] or fusion move [28]
to reduce the huge search space in continuous infinite 3D label space. Both initial
matching based cost aggregation and direct cost aggregations are iterative optimization
processes which are very time consuming.

3 Proposed Method

The work flow of GDRP is shown in Fig. 2. ① The input of GDRP is a depth image.
② SLIC [29] is adopted to segment the depth image. ③, ④ A global energy function
including data term and smooth term is constructed to optimize the depth image.
⑤ Feather algorithm is designed to eliminate seam lines between patches.

3.1 SLIC Segmentation

This paper assumes piecewise continuous scene and adopts SLIC [29] to segment the
input depth image into a series of patches. Si represents the i th patch. Every Patch can
be described by a depth plane function:

d tið Þ ¼ ai � tix þ bi � tiy þ ci; ti 2 Si: ð1Þ
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where, ai, bi, ci represents the plane parameters of patch Si; ti ¼ tix; tiy
� �T

represents a

pixel in Si; tix; tiy
� �T

represents centralized coordinates. The purpose of coordinate
centralization is to improve the robustness of adjustment models.

Due to radiometric distortions or textureless regions, invalid depths exist in depth
images inevitably. Patches in invalid regions are not considered in later optimization
for two reasons: (1) Patches in invalid regions are lack of valid depths, resulting in
unreliable refinement results; (2) The proposd GDRP aims at smoothing depths instead
of interpolation. Number of valid depths in patches are used to judge if patches are
valid or not:

Si ¼ Valid Sij j � d
Invalid Sij j\ d

�
: ð2Þ

where, Sij j represents number of valid depths in Si; d represents threshold.

3.2 Global Energy Function Construction

D represents a depth image. E(D) represents a global Energy function as follows:

E Dð Þ ¼ Edata þ Esmooth: ð3Þ

where, Edata represents a data term which controls the approximation between the
original depth and the refined depth; Esmooth represents a smooth term which controls
the smoothness of depths.

3.2.1 Data Term
Data term is defined as the sum of cost of all the valid patches, as follows:

Input Data Data Term ConstructionSLIC

Smooth Term ConstructionFeather

1 2 3

45

Fig. 2. Work flow of GDRP.
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Edata ¼
Xq

i¼1
C Si; ni

!� �
: ð4Þ

where, q represents the number of valid patches; C represents cost of patches; ni
!¼

ai; bi; cið ÞT represents depth plane parameters of Si. Cost is defined as the distance
between original depths and refined depths, as follows:

Cost Si; ni
!� � ¼

X
ti2Si ai � tix þ bi � tiy þ ci � d0 tið Þ� �2

: ð5Þ

where, d0 represents original depths. ti represents a pixel in Si; (tix,tiy) represents the
centralized coordinates.

Equation (4) can be described in matrix form by definingex ¼ n0
! n1

! . . . nq!
� �T:

Edata ¼ exTGdataex � 2HT
dataex þ ldata: ð6Þ

where, Gdata represents the coefficient matrix of the quadratic term; Hdata represents the
coefficient matrix of linear term; ldata represents the constant term. All the terms are
expressed as follows:

Gdata ¼ Diag gið Þ; Hdata ¼ hT0 hT1 � � � hTq
� �T

; ldata ¼
Xq

i¼1
li;

gi ¼
P

ti2Si tix
2 P

ti2Si tix � tiy
P

ti2Si tixP
ti2Si tix � tiy

P
ti2Si tiy

2 P
ti2Si tiyP

ti2Si tix
P

ti2Si tiy Sijj

0
B@

1
CA;

hi ¼
P

t2Si tix � d0 tð Þ P
t2Si tiy � d0 tð Þ P

t2Si d0 tð Þ� �T
; li ¼

X
t2Si d0 tð Þ2

3.2.2 Smooth Term
The smooth term controls the smoothness between patches. In this paper, the smooth
term uses border pixels to control the continuity between patches, and uses the center
pixels to control the normal direction consistency between patches, as follows:

Esmooth ¼
Xq
i¼1

X
Sj2N Sið Þ

P i; jð Þ
X

t2E Si;Sjð Þ[ ci

aitix þ bitiy þ ci � ajtjx � bjtjy � cj
� �2

0
B@

1
CA: ð7Þ

where, N Sið Þ represents the neighbor patch set of Si; E Si; Sj
� �

represents pixels in Si
which is adjacent to Sj; ci ¼ cix; ciy

� �T
represents the center pixel in Si; (tix,tiy) repre-

sents the centralized coordinates in Si; (tjx,tjy) represents the centralized coordinates in
Sj; P i; jð Þ represents a penalty defined by adjacent relationship between Si and Sj, as
follows:
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P i; jð Þ ¼ P � exp � ndi�ndjj j=rd
� �

� 1 � exp �num i;jð Þ=rn
� �� �

: ð8Þ

where, ndi and ndj reprensets depth averages of adjacent pixels between Si and Sj,
respectively; num i; jð Þ represents the number of adjacent pixels; rd and rn represents
smooth factors; P represents the given penalty coefficient.

Equation (7) can be described in matrix form by defining ex ¼ n0
! n1

! . . . nq
!� �T

:

Esmooth ¼ exTGsex: ð9Þ

where, Gs represents the coefficient matrix of the quadratic term, as follows:

Gs ¼
Xq

i¼1

X
Sj2N Sið Þ P i; jð Þ �

X
t2 E Si;Sjð Þ[ cið Þ gsr i; j; tð Þ

� �
: ð10Þ

where,

gsr i; j; tð Þ ¼

03�3 . . . 03�3 � � � 03�3 � � � 03�3

..

. . .
. ..

. � � � ..
. � � � ..

.

03�3 � � � r1 i; j; tð Þi;i � � � r3 i; j; tð Þi;j � � � 03�3

..

. ..
. ..

. . .
. ..

. ..
. ..

.

03�3 � � � r3 i; j; tð ÞTj;i � � � r2 i; j; tð Þj;j � � � 03�3

..

. ..
. ..

. ..
. ..

. . .
. ..

.

03�3 � � � 03�3 � � � 03�3 � � � 03�3

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

r1 i; j; tð Þ ¼
tix

2 tix � tiy tix

tix � tiy tiy
2 tiy

tix tiy 1

0
B@

1
CA; r2 i; j; tð Þ ¼

tjx
2 tjx � tjy tjx

tjx � tjy tjy
2 tjy

tjx tjy 1

0
B@

1
CA;

r3 i; j; tð Þ ¼
�tix � tjx �tix � tjy �tix
�tiy � tjx �tiy � tjy �tiy
�tjx �tjy �1

0
B@

1
CA;

The global energy function can be redefined by combining Eqs. (6) and (9).

E Dð Þ ¼ exT Gdata þ Gsð Þex � 2HT
dataex þ ldata: ð11Þ

Computing the minimum value of Eq. (11) is equal to solving Gdata þ Gsð Þex ¼ Hdata. Cholesky decomposition can be used to compute ex directly.
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3.3 Feather

In curved surface, obvious seam lines exist between patches. Feather algorithm is
designed to smooth seam lines. Firstly, a buffer with the radius l is defined centered at
seam lines between patches, as shown in Fig. 3(a). Only points in buffer are involved in
feather process. p is a pixel in the buffer. The distance from p to the seam line is l’. The
depth of p can be decided by the plane function of Si, which is defined as di. It can also
be decided by the plane function of Sj, which is defined as dj. The depth after feather is
determined by di and dj in Eq. (12). The feather result is shown in Fig. 3(b).

d0 pð Þ ¼ w � di þ 1 � wð Þ � dj: ð12Þ

where, d0 represents the depth after feather; w represents weight, w ¼ 0:5 þ l0=2l.

4 Experiments

Two experiments were designed to verify the correctness and validity of GDRP. The
first experiment used GDRP to refine a disparity image produced by a state-of-the-art 1D
label algorithm on Motorcycle images which was provided by Middlebury Benchmark,
and compared the original matching accuracy with the refined accuracy, which aimed at
testing the validity of GDRP in indoor reconstruction. The second experiment used
GDRP to refine a DSM generated by INTS [12] on Wuhan university images, which
aimed at testing the validity of GDRP in extensive outdoor reconstruction.

4.1 Indoor Experiment

We chose the disparity image of LW-CNN which ranked the 2nd in Middlebury
Benchmark for indoor experiment. The optimization result is shown in Table 2. The first
column lists the original image and the ground truth, respectively. The second column
lists the original disparity image of LW-CNN and the disparity image after GDRP
refinement. The fourth and the fifth rows show the original matching accuracy and the
refined matching accuracy, respectively. The last row lists the running time of GDRP.

Si

l

p
l'

(a)

Sj

(b)Before Feather After Feather

Fig. 3. Feather between patches.
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Table 2 showed that obvious fronto-parallel bias existed in the original disparity
image of LW-CNN. The refined disparity image was continuous and smooth, which
showed that GDRP was able to remove fronto-parallel bias efficiently. The matching
accuracy didn’t change after refinement. It was because: (1) GDRP took original depths
as the control,thus the refined accuracy after adjustment should be consistent with the
accuracy of the control; (2) fronto-parallel bias was a very slight system error, which
had little influence on accuracy assessment. GDRP needs no iterations. It can achieve
refined results directly. In the case of single CPU @2.6 GHZ, the running time was
only 19.94 s, which was much faster than current 3D label methods in Table 1. It
showed that GDRP was fit for fast reconstruction.

4.2 Outdoor Experiment

INTS method [12] was used to reconstruct the DSM of Wuhan University, as shown in
Fig. 4. Then, GDRP was used to refine the DSM. In order to show the refinement more
clearly, local zoomed reconstruction results are shown in Table 3.

Table 2. Optimization of the motorcycle disparity image.

Original Image and Ground Truth LW-CNN

Original Image Original Disparity Image

Ground Truth Refined Disparity Image 
Original Matching Accuracy: 0.97 pixels
Refined Matching Accuracy: 0.97 pixels

Running Time: 19.94 s
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INTS is a 1D label algorithm. There were obvious fronto-parallel bias in slanted
planes such as roofs, as shown in left column of Table 3. GDRP could smooth
fronto-parallel bias effectively, as shown in right column in Table 3. No significant
difference of accuracy between original and refined DSMs was detected. It suggested
that GDRP only made a small change on the surface to remove the fronto-parallel bias.
The DSM accuracy cannot be improved, because GDRP takes the original DSM as the
control without any stereo images. The advantage of GDRP lies in the time complexity

Fig. 4. DSM reconstruction of Wuhan University.

Table 3. Comparison of original DSM and refined DSM.

MSDdenifeRMSDlanigirO

m57.0:ycaruccAMSDlanigirO
m67.0:ycaruccAMSDdenifeR
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which is much lower than current 3D label. The combination of GDRP and
state-of-the-art 1D label algorithms enables the efficient acquirement of continuous,
smooth 3D reconstruction.

5 Conclusion

This paper proposed a new global depth refinement based on Patches. GDRP trans-
formed the depth refinement into the minimum of a quadratic function, and achieved
continuous, smooth depths without changing the original accuracy. It could remove
fronto-parallel bias of 1D label algorithms efficiently. Compared with the current 3D
label algorithms, GDRP was superior in low time complexity. However, GDRP cannot
improve the accuracy. We will introduce stereo images into GDRP to remove
fronto-parallel bias as well as improve depth accuracies in the future work.
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