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Abstract. This paper proposes low-complexity detection algorithms for Mas-
sive MIMO system: Multiple Dominant Eigenvector Detection Algorithm
(MDEDA) and Antenna Selection Scheme (ASS). Both the schemes calculate
the log likelihood ratios (LLRs). Based on the Single Dominant Eigenvector
Detection (SDEDA), MDEDA searches transmitted signal candidates in multi-
ple dominant eigenvector directions. For one thing, combined multiple eigen-
vectors, MDEDA attains better BER performance, for another, it greatly reduces
the number of transmitted signal candidates. The ASS contains Single Antenna
Selection Scheme (SASS) and Multiple Antenna Selection Scheme (MASS),
focus on channel error modeling, the ASS assumes the signal of some antennas
corresponding to the constellation points in order to minimize the channel error.
SASS searches all transmit antennas, nevertheless, MASS chooses multiple
antennas based on the eigenvalue. Finally, SASS gains better BER performance
but more complexity. Finally, SASS provides an excellent trade-off between
performance and complexity.
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1 Introduction

Massive MIMO is one of the promising technologies for next-generation wireless
communication system with a large number of antennas at the base-station (BS) serving
a large number of users concurrently and within the same frequency band [1–3]. The
price to pay are the increased complexity of signal processing with the increase of the
number of antennas. The optimal signal detection for the system is the maximum
likelihood detection (MLD) [4] which can achieve the minimum bit error rate (BER).
However, MLD requires a prohibitively large amount of computational complexity that
exponentially increases with both the number of data streams and that of constellations.

Linear detection can decrease the complexity greatly, especially when the number
of BS antennas is much larger than the number of the uplink users (i.e., the low system
loading factors), linear detectors like the minimum mean square error (MMSE) detector
are appropriate in terms of both complexity and performance [5]. Unfortunately, for the
massive MIMO system whose number of BS antennas and number of the uplink user
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are approximate, a single linear detection may result in more loss of performance. The
system is exactly our object of study. Hence, the balance of complexity and perfor-
mance of detection schemes in massive MIMO system have attracted lots of attention.

To reduce such complexity, an iterative receiver based on the turbo principle has
been proposed [6]. The iterative receiver can improve reliability of signal detection by
exchanging log likelihood ratio (LLR) of coded bits between soft demodulator and soft
channel decoder parts. The method in [7] first employs a low complexity in order to
find the transmitted signal candidate that maximizes the log likelihood function, that is
the maximum likelihood sequence (MLS). Then, the method applies another low
complexity algorithm in order to find the transmitted signal candidate that maximize
the log likelihood function under a constraint that a coded bit be inverse to that of the
estimated MLS, which is referred to as inverse-bit MLS (IB-MLS). Thus, this con-
ventional method needs to apply the low-complexity algorithm for all the coded bits so
as to find IB-MLS, which requires high complexity. A one-dimensional algorithm,
named plural projection method (PM) was proposed in [8], which can simultaneously
find MLS and IB-MLS in the direction of significance eigenvector with MMSE
detection as stating point. However, one-dimension search algorithm suffers a severe
degradation in BER performance over spatially correlated MIMO channels, because
multiple dominant directions of eigenvector are likely to appear [9].

This paper proposes a low-complexity algorithm that can find MLS and IB-MLS in
multi-dimensional direction of eigenvector. Based on channel error modeling, this
paper also proposes a stream search scheme. Computer simulations demonstrate that
the proposed scheme can maintain excellent receiver performance while reducing the
complexity drastically.

2 System Model

Consider an uplink massive MIMO system with NT transmit antennas and NR receive
antennas. Then the associate massive MIMO transmission can be model as

y ¼ Hsþ n ð1Þ

where H is a NR � NT complex channel matrix and is assumed to be flat Rayleigh
fading channel and known perfectly at the receiver. At the transmitter side, the
information bit s is generated in the source and is first encoded by a convolutional
encoder and then mapped to symbols of different constellation points. The mapped
complex symbols are divided into NT separate independent parallel streams with a
transmitted signal vector s ¼ s1; s2; � � � sNT½ �T2 #NT , where # stands for the complex
constellation and #j j ¼ 2Q ¼ M with M stands for the modulation order, (e.g., for
QPSK, M ¼ 4), as a result, each transmit vector s is associated with NT � Q binary
values xi;b 2 0; 1f g, i ¼ 1; � � �NT , b ¼ 1; � � �Q, corresponding to the bth bit of symbols
of si, y is a NR � 1 received signal vector y ¼ y1; � � � yNR½ �T , and n is a NR � 1 vector of
independent zero-mean complex Gaussian distributed noise vector with variance
r2 ¼ N0 per complex entry (Fig. 1).
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3 Search in Direction of Dominant Eigenvector
Based on MMSE

3.1 Analysis of MMSE Detection

The MMSE detection multiplies y by the weigh matrix and the resultant x̂ is given by

x̂ ¼ PHHy; ð2Þ

P ¼ HHHþ r2INT

� ��1
; ð3Þ

where P is the inverse matrix to be considered and INT is the NT-by-NT identity matrix.
The derivation assumed that ssHh i ¼ INT , and the detected signal is equal to a hard
decision of x̂.

According to (2) and (3), we have

s� x̂ð Þ s� x̂ð ÞH� � ¼ r2P ; ð4Þ

then, the difference between s and x̂ can be expressed as

s� x̂ ¼ P1=2~n; ð5Þ

where ~n is a NT-by-1 zero-mean complex Gaussian distributed noise vector of with
variance r2 ¼ N0.

Next, since HHH is an Hermite matrix and is assumed to be positive definite, the
eigenvalue deposition of P�1 yields
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P ¼ HHHþ r2INT

� ��1¼ VDVH ; ð6Þ

where V is an NT-by-NT unitary matrix and is given by

V ¼ v1; v2; � � � vNT½ �; ð7Þ

vk; k 2 1;NT½ � is the k-th NT-by-1 normalized eigenvector. D is an NT-by-NT

diagonal matrix and is given by

D ¼ diag k1; k2; � � � kNT½ �; ð8Þ

where kk [ 0ð Þ is the eigenvalue of the k-th eigenvector vk . Without loss of generality,
k1 � k2 � � � � � kNT is assumed.

According to (7) and (8),

P1=2 ¼ VD1=2VH ; ð9Þ

P1=2~n ¼
XNT

k¼1

ffiffiffiffiffi
kk

p
vHk nvk : ð10Þ

Finally, (5) and (10) imply that the decision errors by the MMSE detection are
likely to occur in the direction of vk0 when kk0 is very large. The direction coincide with
eigenvector of P having dominant eigenvalues.

3.2 Conventional Single Dominant Eigenvector Detection Algorithm
(SDEDA)

With x̂ as a starting point, the one-dimensional search, performs one-dimensional
search in the direction of vp to find MLS and IB-MLS. Suppose that a hard decision of
xk;m;p 1� k�NT ; 1�m�M; 1� p�NPð Þ, where NP is the number of dominant
eigenvalue and 1�NP �NT .

xk;m;p ¼ x̂þ lðk;mÞvp; ð11Þ

lðk;mÞ is a complex number which determines the distance between xk;m;p and x̂.
lðk;mÞ is obtained so that the k-th element of the hard decision of xk;m;p can be equal to
one of constellations a mð Þ 1�m�Mð Þ, and is given by

l k;mð Þ ¼ q
gk;m
ðvpÞk

; ð12Þ

gk;m ¼ a mð Þ � x̂ð Þk ð13Þ
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In the case of rectangular QAM, q is set as

q ¼

1:0 for aðmÞ ¼ Dec½ðx̂Þk�
for aðmÞ 6¼ Dec½ðx̂Þk�

1þ ndmin

2 Reðgk;mÞj j Reðgk;mÞ
�� ��[ Imðgk;mÞ

�� ��
for aðmÞ 6¼ Dec½ðx̂Þk�

1þ ndmin

2 Imðgk;mÞj j Reðgk;mÞ
�� ��� Imðgk;mÞ

�� ��

8>>>>>><
>>>>>>:

ð14Þ

where Dec[ ] denotes the hard decision operation and n is a real number to satisfy
nj j � 1. dmin is the minimum distance between the constellations; dmin ¼

ffiffiffi
2

p
for QPSK

modulation.
MLS and IB-MLS are selected from Dec½xk;m;p� plus Dec½x̂� on the basis of the

matric. Since the number of xk;m;p is less than or equal to NTMNP, the number of the
hard decisions called transmitted signal candidates is at most NTMNP þ 1.

3.3 Proposed Multiple Dominant Eigenvector Detection Algorithm
(MDEDA)

Transmitted signal may get performance degradation in several directions. So com-
pared with the one-dimensional search scheme above, the multi-dimension search
scheme searches transmitted signal in multiply dominant directions of eigenvector. The
detail is as following.

Compared with (11), transmitted signal candidates are given by

xk;m ¼ x̂þ
XNP

p¼1

lpðk;mÞvp ; ð15Þ

where lpðk;mÞ is step size at the p-th dominant direction of eigenvector.
Let us assume that the k-th element of the candidate is equal to a mð Þ, where

mð1�m�MÞ is an integer and a mð Þ is one of the constellation point. So we have

XNP

p¼1

lpðk;mÞðvpÞk ¼ a mð Þ � x̂ð Þk; ð16Þ

where �ð Þk denotes the k-th element of a vector. The equation can be rewritten in a
vector format as

a mð Þ � x̂ð Þk¼ ~vHk l; ð17Þ

~vHk ¼ ðv1Þk; ðv2Þk; � � � ðvNPÞk
� 	

; ð18Þ
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lH ¼ l1ðk;mÞ; l2ðk;mÞ; � � � lNP
ðk;mÞ� 	

; ð19Þ

where ~vHk and l are NP-by-1 vectors.
Log likelihood function can be transformed into

L sð Þ ¼ y� Hx̂ð Þ � H s� x̂ð Þk k2

¼ L x̂ð Þþ r2 x̂k k2� sk k2

 �

þ s� x̂ð ÞHP�1 s� x̂ð Þ: ð20Þ

When SNR is high, the second term can be neglected. Substituting (6) and (8) into
(20) result in

L xk;m
� � � L x̂ð Þþ

XNp

p¼1

kp
� ��1

vHp s� x̂ð Þ
��� ���2: ð21Þ

The equation can be rewritten in a vector format as

L xk;m
� � � L x̂ð Þþ ~D�1=2l

�� ��2; ð22Þ

~D�1 ¼ diag k1; k2; � � � kNP½ �: ð23Þ

The proposed algorithm performs the maximum likelihood estimation of l for
obtaining candidate of s. The minimization of L xk;m

� �
under the constraint of (16) can

be solved by the method of Lagrange multiplier. Thus, the estimation becomes
equivalent to finding l that minimizes the following cost function f lð Þ:

f lð Þ ¼ lH ~D�1lþx a mð Þ � x̂k � ~vHk l
� 	þx� a� mð Þ � x̂�k � lH~vk

� 	
; ð24Þ

where x is the complex Lagrange multiplier. By calculation, the desired step size l is
obtained as

l ¼ a mð Þ � x̂ð Þk
� 	

~D ~vHk ~D~vk
� ��1

~vk: ð25Þ

MLS and IB-MLS are selected from the set C, whose element is Dec½xk;m� plus
Dec½x̂� on the basis of the matric. Since the number of xk;m is less than or equal to NTM,
the number of the hard decisions called transmitted signal candidates is at most
NTMþ 1. Finally, calculate the LLR [9] of these candidates.

4 Antenna Selection Scheme (ASA) Based on Decision
Errors Modeling

According to (4), we may as well assume d ¼ s� x̂ and e follows complex Gaussian
distribution, thus we have
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ddH
� � ¼ r2P; ð26Þ

p d½ � ¼ 1

pr2ð ÞNTdetP
exp

dHP�1d
r2

 �
; ð27Þ

Next, we propose the single antenna selection scheme (SASS), which chooses the
k-th 1� k�NTð Þ antenna, assume that sk is equal to a modulation constellation point
b mð Þ 1�m�Mð Þ, the decision error of the k-th antenna is

dk ¼ b mð Þ � x̂k ¼ dðm; kÞ: ð28Þ

Under the constraint of (28), apply the Lagrange multipliers in terms of decision
error e:

L d½ � ¼ dHP�1dþ a RH
k d � dðm; kÞ� �þ a� dHRk � d�ðm; kÞ� �

; ð29Þ

where a is a complex Lagrange multiplier, and Rk is an NT-by-1 unit vector of which
the k-th element is 1 and the others are 0.

Finally,

a� ¼ � RH
k PRk

� ��1
dðm; kÞ ; ð30Þ

d̂ ¼ RH
k PRk

� ��1
dðm; kÞPRk¼ Pk

Pkk
dðm; kÞ ; ð31Þ

where Pk and Pkk are the k-th column vector and the (k, k)-th. Let ŝðm; kÞ denotes
detected signal s. So ŝðm; kÞ can be given by

ŝðm; kÞ ¼ x̂þ Pk

Pkk
b mð Þ � x̂k½ �; ð32Þ

When ŝðm; kÞ are obtained with all combinations of m and k, the number of can-
didate is 1þNTM, then the final detected signal ŝ is selected as the one according to
log likelihood ratio.

In the scheme above, we choose just one antenna, to obtain more performance gain,
we extend the number of antenna to plural l, which has Cl

NT
antenna selection in total.

There is no doubt that the number of candidate vectors is increased greatly, which
results in high computation complexity. So select just one set of antenna based on some
principle is essential, which is named as Multiple Antenna Selection Scheme (MASS).

The antennas of which transmission performance is degraded owing to the MMSE
should be selected. Combined with Multi-Dimensional Search scheme above, we can
choose l antennas of which eigenvalue is relatively small. Then the number of can-
didate transmitted vector is 1þMl, which increases exponentially with the number of
antennas we choose. So if we choose too many antennas, there’s no doubt that the
complexity is unacceptable.
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5 Simulation Results and Analysis

Computer simulations were conducted to verify performance of the proposed algo-
rithms. The simulation conditions are listed in Table 1, in the following, we simulated
six kinds of detection schemes, including SASS, MDEDA, SDEDA, MASS,
MMSE-OSIC, MMSE-PIC.

Observing from Figs. 2 and 3, BER of SASS and MDEDA is superior to that of
other schemes. Furthermore, SASS outperforms MASS, and MDEDA is better than
SDEDA, corresponding to the theory above. MMSE-OSIC and MMSE-PIC have poor
detection performance, and the former’s complexity increases with transmitted

Table 1. Simulation conditions

Number of transmit antennas NT 32
Number of transmit antennas NR 32
Number of dominant eigenvector NP ¼ l 2
Modulation QPSK
Channel coding Convolution code
Decoding LLR
Range of SNR 0–20 dB

Channel model Rayleigh fading ð ffiffi
p
2

p
; 2� p

2Þ
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Fig. 2. Average BER with NT ¼ NR ¼ 32
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antennas rapidly, however, MMSE-PIC has the least complexity to adapt to system of
which detection performance requirements are not high. Fortunately, SASS and
MDEDA get a superior trade-off between performance and complexity. In the condi-
tion of Fig. 2, MLD has complexity of 2:0� 1022, SASS reduce the complexity to
about 10�18 of that of MLD. Compared with the other schemes, SASS achieves
low-complexity detection algorithm and ensures the BER performance.

6 Conclusion

This paper has proposed low-complexity signal detection algorithms for Mas-
sive MIMO system, including MDEDA, SASS and MASS. MDEDA combined the
effect of several eigenvector, thus attaining better BER performance and less com-
plexity. Focusing on error modeling, SASS and MASS are proposed. SASS searched
all transmit antennas, and MASS just choose several antennas. SASS got less com-
plexity and superior BER performance, compared with MDEDA. In the system of
Massive MIMO, SASS obtained a superior trade-off between performance and
complexity.
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