A Full-Protocol-Stack Testbed
for Space Network Protocol Emulation

Xiaogin Ni, Kanglian Zhao®™), and Wenfeng Li®

School of Electronic Science and Engineering, Nanjing University,
22 Hankou Rd., Nanjing 210093, Jiangsu, People’s Republic of China
nixiaoqin44@163.com, zhaokanglian@nju.edu.cn, leewf_cnChotmail.com

Abstract. With the rapid development of space networks, new space
communications protocols are emerging, for which emulation is an essen-
tial step during design and test. In this paper, we propose a lab-based
testbed, in which software and hardware tools are utilized together to
emulate full network protocol stack. A software protocol gateway is
implemented to preform protocol conversion like IP over CCSDS in Data
Link Layer. A specified hardware, Cortex CRT-Q is adopted for accu-
rate emulation of space links, which connects upper layers with Physical
Layer. Thus, our testbed benefit from both the fidelity provided by hard-
ware and flexibility brought by software.

Keywords: Lab-based testbed - Full network protocol stack
IP over CCSDS - Space link

1 Introduction

A space communications protocol is a communications protocol designed to be
used over a space link, or in a network that contains one or multiple space links.
According to the CCSDS blue book, the space communications protocols are
defined for the following five layers of the ISO model [1]:

(a) Physical Layer;
(b) Data Link Layer;
(c¢) Network Layer;
(d) Transport Layer;
(e) Application Layer.

During design, implementation and utilization of space communications proto-
col, emulation is an essential step. Various testbeds for emulating space network
have been proposed in different works. The key point of the testbed is how to

This work is supported by the National Natural Science Foundation of China
(No. 61401194), the Fundamental Research Funds for the Central Universities
(021014380064) and the Priority Academic Program Development of Jiangsu Higher
Education Institutions.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

X. Gu et al. (Eds.): MLICOM 2017, Part I, LNICST 226, pp. 339-346, 2018.
https://doi.org/10.1007/978-3-319-73564-1_33

340 X. Ni et al.

reproduce the space links in laboratory. A space link is a communications link
between a spacecraft and its associated ground system or between two spacecraft.
[1] The space communication link displays special characteristics different from
those of terrestrial ones: larger link delay, higher bit error rates, bursts of errors,
packet disordering, etc. To emulate a space-ground link, field testing equipment
can be prohibitively expensive and deployment scheme is inflexible. [2] Another
method is using software like netem to control the delay, the BER and the rate.
[3] The problem of this kind of testbed is that data flows through Ethernet net-
work, which is different from specialized transceivers running dedicated Data
Link Layer protocols, like AOS [7].

Experiments with full network protocol stack is preferred for system level
performance emulation. To emulate a space communications protocol, a widely
used method is utilizing network simulator software like OPNET [4], which is
confined to state machine in a single PC lack of fidelity. Another solution is
utilizing protocol gateway based on FPGA [5] to perform IP over CCSDS, in
which a certain threshold and difficulties for developing exits, with protocol
configuration lack of flexibility.

In this paper, a full-protocol-stack testbed is proposed for network protocol
emulation. Hardware components like Cotrex Command/Ranging/Telemetry-
Quantum (hereinafter referred to as Cortex CRT-Q) [6] is applied to provide
accurate space-ground link and software protocol gateway (hereinafter referred
to as SPG) provides flexible configuration and emulation of full protocol stack.
The remainder of this paper is organized as follows. Section 2 describes the design
of our testbed including facilities and equipment. Verification experiments and
relevant results are presented in Sect.3. The conclusions and future works are
drawn in Sect. 4.

2 Design for Testbed

2.1 Overview of the Architecture

The hardware architecture of the testbed is showed in Fig. 1, which consists of
one Cortex CRT-Q, two SPGs and several PCs. Cortex CRT-Q provides space
links, which incorporates powerful built-in simulation capabilities for functional
and performance test purposes including: receiving data as simulation resource
and sending out data after demodulation over the ETHERNET LAN, IF mod-
ulation (PM, FM, BPSK, QPSK, OQPSK or AQPSK) and demodulation, noise
generation, etc. In this paper, Cortex CRT-Q works in the local loop-back mode
to emulate a space-ground link in a lab environment. SGP functions as a bor-
der gateway, which performs protocol conversion like IP over CCSDS simultane-
ously. PCs act as communication nodes in space network such as ground stations,
spacecraft, users, etc.

2.2 The Design of the Software Protocol Gateway

The implementation of the SPG is based on the concept of protocol layering
principle. Figure 1 also shows the protocol architecture. Notice that, SPG works

A Full-Protocol-Stack Testbed for Space Network Protocol Emulation 341

CFDP CFDP
BP |APP APP| BP
CL CFDP CFDP CL

IP IP

TCP/UDP% P BP BP P % TCP/UDP

P

. | pe | Lre o LTP | IPE : 1P
Q &) 9 |9
Eth % Eth > | ENcaP ENCAP %‘ % Eth

]

£t

Cortex
PHY PHY AOS AOS PHY PHY
@ CRT-Q

]
Communication Protocol -ﬁl)tocol Communication

Nodes Gateway Gateway Nodes

Fig. 1. Overview of the architecture

upon two protocol stacks as a border gateway, solving the protocol conversion
problem. Reserving interface like socket port in different layers is convenient for
debugging and monitoring with the help of wireshark or tcpdump. SPG operates
in a Linux environment and program in each layer will be explained later.

In Network Layer, we write program based on libpcap and libnet, to accom-
plish capturing and sending IP packet. The Application Layer data extracted
with IP header, needs fragmentation and reassembly sometimes when the pay-
load length is bigger than MTU.

In Data Link Layer, Advanced Orbiting Systems (AOS) [7] protocol has
been designed to meet the requirements of space missions for efficient transfer of
space application data of various types and characteristics over space-to-ground,
ground-to-space, or space-to-space communications links. Thus it is selected as
Data Link Layer protocol in our testbed because of its maturity and universality,
certainly could be replaced by others. The IP OVER CCSDS SPACE LINKS
blue book [8] describes the recommended method for transferring TP PDUs over
CCSDS SDLPs including AOS. IP PDUs are transferred by encapsulating them,
one-for-one, within CCSDS Encapsulation Packets. The Encapsulation Packets
[9] are transferred directly within one or more CCSDS SDLP Transfer Frames.
This method uses the CCSDS Internet Protocol Extension (IPE) convention
in conjunction with the CCSDS Encapsulation Service over CCSDS AOS. We
program according to relevant books and RFCs to perform protocol conversion.

In Physical Layer, with different configuration parameters set, Cortex CRT-Q
could provide different physical link. It reads data as simulated data from port
3021 or 3022. After local real-time modulation and demodulation, port 3070
is used to send telemetry data out, which is triggered by a request command.
Working mode provided by Cortex CRT-Q is oriented to data stream, however,
the data form involved in protocol emulation is mainly intermittent data packet.
Generally, if the transmission rate of the Application Layer does not match with
the bit rate of the Physical Layer, phenomenon occurs as follows: if transmission
rate is higher, problems of congestion, delay and packet loss would be serious;

342 X. Ni et al.

if bit rate is higher, in order to avoid modulation blank, given amount of data
is required to wait, which resulted in unnecessary delay. The difference between
data stream and data packets makes requests for link adaption. Therefore, socket
programming of non-blocking mode is applied. When there is no data to send,
idle data is sent to maintain channel synchronization. In brief, we program to
put and get AOS frames in CRT frame format and accomplish link adaption.

2.3 Data Flow on the Testbed

Make an introduction to the data flow on the testbed. Figure2 shows only
one-direction communication process, the other direction is similar. Two sub-
nets are representing terrestrial and space network respectively, for example,
192.168.0.0/24 (hereinafter referred to as subnet 1) and 192.168.10.0/24 (here-
inafter referred to as subnet 2). SPG connects the PCs of each subnet with the
Cortex CRT-Q.

PCs in subnet 1 sets the routing table, enabling all data whose destination
is subnet2 are converged in SPG 1. SPG 1 receives the data from network card
that would be sent to pcap program to filter out IP packets, which encapsulated
into AOS frame later and sent to Cortex CRT-Q in simulated data format.
Cortex CRT-Q modulation frequency is set as 70M, with different modulation
parameters configured. SPG 2 keeps sending request commands to the Cortex
CRT-Q. Once telemetry data is received, which would go through CRT-unpack
and AOS-unpack program. Original IP packets would be sent to the PCs in
subnet 2 through libnet program, after adding Ethernet frame header.

Based on Cortex CRT-Q and SPGs, data flow contains space-ground links,
upon which full network protocol stack are emulated.

[192.168.0/24 j[Subnet 1 j

—
pcap SPG 1

Simulated
Bund LT r j AOS Data
ipn:1.1 span 1 Eegment frame
BP LTP

]I

CRT

CRT-Q

[=1

El

Telemetry
Data

Bundle LTP AOS
ipn:2.1 span 2 m
BP J

LTP | HeE |

IP Packet ‘
libnet

(192‘168.10/24] [Subnet 2]

B

[%)
o
9]
N
J

H

Fig. 2. Data flow

A Full-Protocol-Stack Testbed for Space Network Protocol Emulation 343

3 Test and Discussion

3.1 Fidelity of the Testbed

The fidelity of testbed mainly depends on the accuracy of bit rate and bit error
rate (hereinafter referred to as BER) that Cortex CRT-Q supplies. The following
two experiments is performed to verify these indicators. Because in Cortex CRT-
Q, frame size is fixed after configuration. In this paper, frame size is 1024 B. Make
analysis according to AOS frame format (Table 1) without noise. We could reason

out:

Payloadsize

Bandwidth = BitRate (1)

Framesize

Table 1. AOS frame format

AOS frame 1024 B

Sync word | AOS | AOS data field AOS
1ACFFC1D | Head | MPDU | Encap | IPE | Payload | CRC
4B 6B 2B 4B 1B |1006B 2B

If payload is smaller than 100 5B, it will be filled with idle data until the total
length is 1005 B. Otherwise, it will be split into several frames with length of
1005 B. At this time, the formula is revised to:

. Payloadsize .
Bandwidth = mBltRate (2)
Payloadsize
N=|—————
] 10058 | 3)

Therefore, when the payload length is set as 1005 B, actually 977 B subtract
IP and UDP header, the optimal bandwidth utilization equals 95.41%. In the
two subnets, two PCs are running iperf [10] server and client respectively. The
bandwidth in 100 Kbps link with different payload size is tested as Fig. 3, and the
best bandwidth with different bit rates is tested as Table 2. Since the measured

Table 2. Best bandwidth with different bit rate

Bit rate | Bandwidth | Channel utilization
100k 94.9k 94.90%
500k 474.0k 94.80%
1M 942.1k 94.20%

344 X. Ni et al.

100 —_——— 12 [_J8eR=106
[_IBER=10-5
10t
[theoretical value
BF == F----FFF---- - 7865
g 0
< o]
5 G
@
]
ot
o
! theoreical val
|488 kngGlCaﬁVaﬁuei B [L _ — 4 _ o086
© ‘ ‘ ‘ ‘ a8 ‘ 0
50 600 700 800 900 1000 1100 1200 1300 100K 500K ™
Payload/b Bit Rate
Fig. 3. Bandwidth with different Pay- Fig. 4. Loss ratio (different Bit rate)

loadsize (100 kbps)

results are very close to the theoretical value 95.41%, it can be concluded that
the indicator of bit rate is valid and accurate.

Now, we analyze validity of configuration for BER. Essentially, software emu-
lator like tc/netem, controls BER in Physical Layer by counting and dropping
specific amount of packets in upper Layer (probably Network Layer). On the
contrary, Cortex CRT-Q controls BER by setting up noise with different C'/Ny
in Physical Layer, which leads to packet loss in Data Link Layer because of fail-
ing to pass checksum. The latter is more logical and credible. According to the
formula:

PeBPSK = %erfc(\/Eb/No) (4)

After C'/Ny is set to 59.5 dB (R = 100 Kbps, BSPK) in the noise modular of
the Cortex CRT-Q, Ej/Ny is showed around 9.5dB. The BER now is 1072,
according to the formula (4). As for loss ratio,

LossRatio = 1 — (1 — BER)8packetsize (6)

Packet size is 1024 B because each frame in Cortex CRT-Q is 1024 bytes, after
conversion, the packet loss rate is 7.865%. After backing up data sent to and
receive from Physical Layer (CRT), we can calculate BER by making compar-
isons. Analogically, after backing up data sent to and receive from Data Link
Layer (AOS), we can calculate Loss Ratio. File with the size of 10 MB was sent
in the configuration of BER =10"%and BER = 10~ Swith different bit rates, the
test results are as Fig. 4. The measured results are very close to the theoretical
value, it can be concluded that the indicator of BER valid and accurate.

A Full-Protocol-Stack Testbed for Space Network Protocol Emulation 345

3.2 Flexibility of the Testbed

Firstly, two subnets ping each other to make analysis of delay. When bit rate
is 100 Kbps without noise, average RTT is 460 ms. Considering that each ICMP
packet is packed into a 1024 B CRT frame, channel delay is 82ms and one-way
program processing delay is about 148 ms.

Based on the design principle of protocol layering, we can flexibly change
upper protocols to test other protocol stack for example DTN [11] (gray parts
in Fig.1). To perform testing, the Interplanetary Overlay Network (ION) ver-
sion 3.5.0 open source software implementation of DTN [12] was used on Linux
PCs including SPGs and communication nodes. On the basis of the IP over
CCSDS, according to the relevant blue book and RFC [13-15], with ION soft-
ware providing CFDP/BP/LTP application, new data flow is as follows (gray
parts in Fig.2): Gateway 1 acting as ipn:1.1, splits CFDP file into BP bundles
and cuts converged bundles into LTP Blocks, then according to the link layer
MTU(1005 B, optimal payload size), LTP Blocks turn into LTP segment. This
is a very intuitive process of a CFDP-BP-LTP-AOS-RF protocol emulation.

We set up another testbed as a contrast (Fig.5). A PC utilizes tc/netem
acting as a link. At first, delay is configured as 222 ms and rate is 100 kbps. So
that RTT of Ping is 460 ms, same as our testbed. But bandwidth measured by
iperf (977B payload size) is 96.1 Kbps, higher than 94.9 Kbps. After revising
rate to make sure the result of iperf is the same as 94.9 Kbps, ION software
uses different protocols, such as CFDP/BP/LTP protocol, sends the same file
(200kB), delivery time in our testbed compared with software emulator are as
Fig. 6.

It is displayed that delivery time of our testbed is still a little longer than
software testbed. The reason is that in software testbed, even rate and delay are
the same, protocol in Data Link Layer and Physical Layer is different. Because
in our testbed, LTP is directly running upon AOS (after simple Encapsulation
[9]) and frame size of AOS is fixed (1024 B in our testbed) for both forward

25

[_ICRT-Q
[Jtc/netem
201 ——
—— L
[o ———=
2
E 15
IS
el
2
g 10r
[] : [] il
. .
[FEESR\ [N [FEESR\

Protocol

Fig. 5. TC/netem testbed Fig. 6. DTN protocol testing

346 X. Ni et al.

data packets and backward ACK packets. However, in software testbed, LTP is
running upon UDP and frame size of Ethernet is not fixed. It means in software
testbed, at least, ACK arrives more quickly because of small size, therefore, the
total communication process is shorter. The phenomenon reflects the advantage
of our testbed, full-protocol-stack-emulation, in another way.

4 Conclusion and Prospect

In this paper, software and hardware tools are utilized together to emulate full
network protocol stack. Based on the accurate physical space-ground link pro-
vided by hardware components, results of the emulation is more credible. What’s
more important, the testbed proposed in this paper can provide the researchers
and developers the feasibility to emulate or test new protocols in any layer of a
reconfigurable full network protocol stack in space networks.

References

1. Green Book. Overview Of Space Communications Protocols (2007)

2. Murawski, R., Bhasin, K., Bittner, D., et al.: Hardware and software integration
to support real-time space-link emulation. In: IEEE, International Workshop on
Computer Aided Modeling and Design of Communication Links and Networks.
IEEE (2012)

3. Lochin, E., Prennou, T., Dairaine, L.: When should I use network emulation? Ann.
Telecommun. 67, 247-255 (2012)

4. OPNET Homepage. www.opnet.com/products/modeler /home.html

5. Liu, F., Yan, H., Liu, H.: The design and implementation of configurable high-
speed IP over AOS gateway. In: Computer Applications and Communications.
IEEE (2014)

6. Cortex CRT-Q. http://www.zodiacaerospace.com/en/cortex-crt-q

7. Blue Book. AOS Space Data Link Protocol (2006)

8. Red Book. IP over CCSDS space links (2006)

9. Blue Book. ENcapsulation Service (2009)

10. Iperf. https://sourceforge.net/projects/iperf/?source=directory
11. Caini, C., Cruickshank, H., Farrell, S., et al.: Delay- and disruption-tolerant net-

working (DTN): an alternative solution for future satellite networking applications.
Proc. IEEE 99, 1980-1997 (2011)

12. ION-DTN. https://sourceforge.net/projects/ion-dtn/?source=directory

13. Standard, Draft Recommended, and Red Book. CCSDS Bundle Protocol Specifi-
cation (2010)

14. Red Book. Protocol (LTP) for CCSDS (2011)

15. Sheets BBP. CCSDS File Delivery Protocol (CFDP) (2004)

www.opnet.com/products/modeler/home.html
http://www.zodiacaerospace.com/en/cortex-crt-q
https://sourceforge.net/projects/iperf/?source=directory
https://sourceforge.net/projects/ion-dtn/?source=directory

	A Full-Protocol-Stack Testbed for Space Network Protocol Emulation
	1 Introduction
	2 Design for Testbed
	2.1 Overview of the Architecture
	2.2 The Design of the Software Protocol Gateway
	2.3 Data Flow on the Testbed

	3 Test and Discussion
	3.1 Fidelity of the Testbed
	3.2 Flexibility of the Testbed

	4 Conclusion and Prospect
	References

