
Distributed System Model Using SysML
and Event-B

Qi Zhang(&), Zhiqiu Huang, and Jian Xie

Nanjing University of Aeronautics and Astronautics,
Nanjing, People’s Republic of China
zhang1993@nuaa.edu.com,

{zqhuang,xiejian_5}@nuaa.edu.cn

Abstract. Distributed system is more complicated compared with other sys-
tems due to its concurrency and distribution. Moreover, the traditional system
development process is usually informal, and a large number of tests are
required. On the other hand, the formal methods have been applied in many
system development fields and many achievements have been made. In this
paper, a method which combines SysML requirement diagrams and Event-B to
model distributed system is proposed, including their mapping relations.

Keywords: Distributed system � SysML � Event-B � Requirement diagram

1 Introduction

Compared with the traditional centralized system, the distributed system is more
complicated due to its concurrency and distribution. Though the distributed system has
developed rapidly with kinds of specifications and standards in recent years, there still
exists some shortcomings. Because these specifications and standards usually lack solid
theoretical foundation, it’s difficult to give a formal specification of distributed systems
as well as the correctness verification. As the distributed system becomes increasingly
complicated, the formal methods are needed to help overcome these shortcomings in
development.

The formal methods are used to help model complex system in a mathematic way
[10]. In formal development method, the text-based requirements are formalized, and
with the help of formal developing tools, hazards and errors can be automatically
detected. Event-B is a formal specification language for modeling and verifying system
requirements [1]. The basic idea that distinguishes Event-B from other formal methods
is its refinement mechanism. In Event-B refinement process, the abstract specifications
can be transformed into concrete specifications gradually until all requirements in the
specification contained in the model. Besides, a set of proof obligations (POs) are
generated after every refinement stage, which are used to verify the consistency from its
abstract model and to make sure that the functional requirements have been correctly
added [9].

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
X. Gu et al. (Eds.): MLICOM 2017, Part I, LNICST 226, pp. 326–336, 2018.
https://doi.org/10.1007/978-3-319-73564-1_32

Although Event-B provides a refinement mechanism to gradually model the sys-
tem, one of the major problem is that there is no standard guideline to use the
refinement mechanism. When modeling complex systems, it is difficult for developers
to organize the refinement steps. On the other hand, the main weakness of using formal
method in system modeling is the gap between text-based requirement and the initial
specification. Thus, before modeling, a preliminary study of requirement analysis
should be considered. There are several requirements engineering approaches used to
describe requirements such as KAOs [11] and i* [13], but most of them stop at the
requirements analysis stage, and do not involve later development process. Besides,
SysML [2] is a modeling language for system engineering. Except for the basic dia-
gram of UML, SysML also inherits the extensibility mechanism and provides some
new diagrams, such as the requirement diagram and the parameter diagram. In [3], the
author proposed to extend the SysML requirement diagram with goal model in KAOs
method, and established a mapping relationships between the extended requirement
diagram and the B method [12]. Considering that the B method is mainly applicable to
software modeling, and the author didn’t mention the consistency of the model. This
paper proposes to combine SysML requirement diagram with Event-B modeling pro-
cess, the paper mainly focuses on the contains relationship of SysML requirement
diagram. First we use the requirement diagram to build the hierarchical relationships of
requirements, then we translate these hierarchical relationships into the modeling
process of Event-B, and verify the consistency of the model.

The organization of this paper is as follows, Sect. 2 gives some related knowledge
of Event-B and SysML requirement diagram. Section 3 describes the methods that
translates typical relationship of SysML requirement diagram into Event-B framework.
Section 4 is a case study to illustrate the proposed approach. And Sect. 5 gives con-
clusion and future work.

2 Background

2.1 SysML

SysML [2] is a unified modeling language for complex system analysis and specifi-
cation. As an extension of UML subset, some new diagrams are proposed such as
requirement diagram and parametric diagram. In this paper, we focus on the require-
ment diagram. A requirement is represented by a specific identifier and a text-based
description in requirement diagram. There are two kinds of relationships in requirement
diagram, the relations verify, satisfy, and refine describe the relationship between
requirements and other model elements [3]. The relation contains represents that a
sub-requirement is a part of its composite requirement. The relation derive relate a
derived requirement to its source requirement, for example a sub-system requirement
may derived from a system requirement. The relation copy expresses that one
requirement is the same version of another requirement. And these relations can be
depicted as follows (Fig. 1):

Distributed System Model Using SysML and Event-B 327

2.2 Event-B

Event-B is a formal method for discrete system development based on first-order logic
and set theory, which is evolved from the classical B method [1]. There are two main
components in Event-B: context and machine. Context describes the static properties of
the model. Machine describes the dynamic behavior of a model. Another important
concept is the refinement mechanism in Event-B. A refinement process means more
detailed properties introduced into the concrete model from the abstract model. The
elements and the relationships of Event-B model can be shown as Fig. 2.

In general, Event-B is a state-based discrete system modeling language, the
mathematic model defined in machine is represented by states and its transition
mechanism, i.e. the event. The state is represented by the value of the variable, and the
property that states should always hold in a machine is invariant. In Event-B machines,
events are used to update the state, the main elements of event are guards and actions.

Requirement

+Id
+ReqName
+Text

Model
Element

internal
Relationships

Contains Derive Copy

external
Relationships

Satisfy Verify Refine

source

target

Fig. 1. Relations in SysML requirement diagram

variables

invariants

events

variables

invariants

events

sets

constants

axioms

sets

constants

axioms

sees

sees

refinesrefines

Abstract
Machine

Concrete
Machine

Abstract
Context

Concrete
Context

Fig. 2. Relations in Event-B model

328 Q. Zhang et al.

Guards are conditions that the transition should satisfy, and actions are behaviors that
update current states. A common form of an event is:

e, any x where G s; c; x; vð Þ then BA s; c; x; v; v0ð Þ ð1Þ

x is the parameter of the event, G s; c; x; vð Þ is a set of conditions for triggering
events, s is the carrier set and c is the constant, and v is the current value of the variable,
respectively. The body of event e is BA s; c; x; v; v0ð Þ, where v0 represents the updated
value of the current state.

Through the refinement mechanism of Event-B, the abstract machine can be refined
into a more specific machine. To maintain the consistency of the refinement chain in
the model, a set of proof obligations (POs) should be proved, which is generated from
the specification. There are two types of consistency in Event-B model, the model’s
self-consistency and the consistency with its abstract machine. If all POs are dis-
charged, then the consistency of the model is confirmed.

After the model is built, it is necessary to prove that all the properties have been
correctly added into the model. However, in a large project, the number of proofs may
be up to thousands. Obviously, it is not possible to solve these proof manually. Rodin
[4] is a development platform for Event-B, and it is based on eclipse. In rodin platform,
many plug-ins are included for development, such as POs generator and prover, the
first one is used to analyze the model and automatically generate corresponding proof
obligations. The other is used to prove them.

3 From SysML Requirement Diagram to Event-B

Since the requirement in SysML requirement is textual and informal, it is not possible
to directly translate requirement from requirement phase to formal specification phase.
We propose to define rules to derive a refinement framework from the requirement
diagram.

The main idea is to decompose the initial requirement into two different types, the
functional requirement and the domain requirement. These two kind of requirement can
be specified by contains relationship. The functional requirement is used to specify the
intended behaviors that system will achieve, the domain requirement specifies the static
environment factors such as the physical law the system should obey. As we have
mentioned before, Context describes the static property, while machine describes the
dynamic behavior of the system. Context can be extended with more properties while a
domain requirement in SysML requirement diagram can be decomposed into more
detailed sub-requirement [8]. The static property in domain requirement can be
described by the axiom in context. In Event-B, the dynamic behavior is expressed by
events and the invariants, in which the invariant is to make sure that the state converted
by event is consistent with the model. The basic mapping relation from SysML
requirement diagram to Event-B models is illustrated in Fig. 3.

Distributed System Model Using SysML and Event-B 329

3.1 Event-B Machine Consistency

In order to verify whether the model satisfies specified properties, Event-B defines a set
of proof obligations that need to be discharged. And some POs involve the consistency
and deadlock-freeness of model, such as Feasibility (FIS), invariant preservation (INV),
deadlock-freeness (DLF). FIS is used to make sure that actions in events are feasible,
INV is used to ensure that each event in machine maintains the property preserved in
invariants, and DLF is to ensure that there are always some enabled events during the
execution. The formal forms of these proof obligations are shown as follow:

FIS: A s; cð Þ ^ I s; c; vð Þ ^ G s; c; v; xð Þ ‘ 9v0 � BA s; c; v; x; v0ð Þ ð2Þ

INV: A s; cð Þ ^ I s; c; vð Þ ^ G s; c; v; xð Þ ^ BA s; c; v; x; v0ð Þ ‘ inv s; c; v0ð Þ ð3Þ

DLF: I s; c; vð Þ ‘
_n

i¼1
9xi � G xi; vð Þð Þ ð4Þ

A s; cð Þ is the axiom in context, I s; c; vð Þ is invariants in machine, and inv s; c; v0ð Þ
are invariants that involve variables in BA s; c; v; x; v0ð Þ. According to the proofs in [14],
the consistency property can be verified by discharging FIS and INV proof obligations.
Meanwhile, with the help of plug-ins in rodin platform, these proof obligations can be
automatically generated and discharged.

Text=“…...”
Id=

«requirement»
Domain Environment

Text= “……..”
Id=

«requirement»
Functions

Text=“…….”
Id=

«requirement»
Initial req

Context

sets

constants

axioms

Machine

variables

invariants

events

sees

Event-B model

Fig. 3. Mapping relations between SysML requirement diagram and Event-B

330 Q. Zhang et al.

4 Case Study: A Leader Election Algorithm

The object of this section is to illustrate the approach through a common leader election
algorithm from [1]. As we know that the leader node is a coordinator of a bunch of
servers, there should be only one leader node and all servers should recognize the
leader. In a word, the leader election is used to elect a leader node in a group of process.

In this paper, we consider to model a simple distributed system, the ring network.
Each process in this ring network have their own id, and is able to send a message to
the next process in this ring network, in addition, all processes can store the message in
their buffers. In the algorithm, the process only accepts the message which is no less
than its own id and rejects messages that have smaller id. The algorithm stops when a
process receives its own id from other node, and this node is the leader node.

4.1 The Initial Model

At the beginning, we have an initial requirement described as “A leader node should be
elected in a ring network”. From this initial requirement, we can derive two sub
requirements, shown as Fig. 4.

The sub-requirement “Leader Elect” and “Environment” can be mapped into
Event-B machine and context, respectively. Here, we consider to build a simple net-
work which contains a set of nodes, and the corresponding specification in Event-B
context is shown as Fig. 5.

In this context, we defined a constant Num to include nodes with different id. The
axm4 means that there should always be a node that have the biggest id. Moreover, we
don’t consider about the ring structure. It will be refined into next refinement.

And the next requirement is “Leader Elect”, in this event, maxId is a variable that
can be assigned as the largest id in all nodes. The basic form can be shown as follows
(Fig. 6):

Text=“A leader node should be elected
in a ring network.”
Id=“S1”

«requirement»
Distributed computing

Text=“A leader node should
be elected.”
Id=“S1.1”

«requirement»
Leader Elect

Text=“Each node in the
network has its own id.”
Id=“S1.2”

«requirement»
Environment

Fig. 4. Initial requirement diagram

Distributed System Model Using SysML and Event-B 331

4.2 First Refinement

From the initial model, we have built a simple model that contains only one event and
don’t consider the ring structure. The requirement diagram should be extended further,
as the requirement can be explained in a detailed way. In the following refinement a
ring structure should be added into the context, and the requirement environment will
be extended as follows (Fig. 7):

And the corresponding context in Event-B model is shown as Fig. 8.
The constant next is a function that maps one node to another node.

@axm1
@axm2
@axm3
@axm4

Fig. 5. Initial context in Event-B

event elect
then

@act1
end

Fig. 6. Event elect

Text=“Each node can send message
to its neighbor in a ring structure”
Id=“S1.2.1”

«requirement»
refEnv

Text=“Each node in the network
has it s own id.”
Id=“S1.2”

«requirement»
Environment

Fig. 7. Extend the Env requirement

332 Q. Zhang et al.

Also, the requirement Leader Elect will be refined into three more concrete
requirements, accept, reject and refElect, which can be depicted as follows (Fig. 9):

In this requirement diagram, three refined requirements are contained in the Lea-
derElect. The requirement Accept means that nodes in the ring network only receive
message that has bigger id. On the contrary, the requirement Reject rejects message that
is smaller than its own id. And the requirement RefElect details the operation in
LeaderElect. The corresponding events in the refined machine are described partially as
follows (Figs. 10 and 11):

axm1_1:

axm1_2:

Fig. 8. Extended context in Event-B

Text=“A node’s id will be
accepted if it’s greater than
current id.”
Id=“S1.1.1”

«requirement»
Accept

Text=“A node’s id will be
rejected if it’s smaller than
current id.”
Id=“S1.1.2”

«requirement»
Reject

Text=“once the node
accept an id which is the
same as itself is the
leader
Id=“S1.1.3”

«requirement»
RefElect

Text= “A leader node should be
elected.”
Id=“S1.1”

«requirement»
Leader Elect

”

Fig. 9. Extended Leader Elect

event Accept
any
where

@grd1_1
@grd1_2

then
@act1_1

end

Fig. 10. Event Accept

Distributed System Model Using SysML and Event-B 333

In these events, variable buffer is used to store the nodes that are not rejected, and
the invariant is shown as follows (Fig. 12):

With this refinement step, a concrete model which contains more detailed infor-
mation can be built. The next step would be considering the consistency of this model.

4.3 Model Verification

Although the ring network model has been built through refinement, we still have to
verify the consistency and correctness of our model. In Event-B modeling, there are set
of proof obligations that should be proved while the model has been build. For
example, after the Accept event has been executed, we have to proof that the new value
of variable a is still consistent with the corresponding invariant such as inv1_1. And the
proof process can be shown as follows (Fig. 13):

Event RefElect
any
where

@grd1_1
@grd1_2

then
@act1_1

end

Fig. 11. Event RefElect

Inv1_1:

Inv1_2:

Fig. 12. Invariants in refined machine

⊢⊢
Inv1_1
Guards of event
Accept

Modified invariant Inv1_1

Fig. 13. Event Accept INV1_1 proof obligation

334 Q. Zhang et al.

If all the proof should be proved manually, it would be a long time and becomes
difficult. Rodin [4] is a platform for Event-B modeling, it provides not only a devel-
opment environment, but also some tools that can automatically prove POs of the
model, which simplified the proof procedure [5, 6]. The ring network we have built is
automatically proved by Rodin platform, which can be shown as follows (Fig. 14):

5 Conclusion and Future Work

As a formal specification language, Event-B is capable for complex system modeling.
However, one of the major problem is that there is no standard guideline to use the
refinement mechanism. On the other hand, SysML requirement diagram gives a pre-
liminary analysis of requirements, and the hierarchical structure of requirements is
built. In this paper, we propose mapping relationships between SysML requirement
diagrams and Event-B refinement process. And since these relationships are partial, a
more precise semantic should be added in SysML requirement relations. Here, we plan
to extended SysML requirement diagram with goal model in KAOs method. Goals in
goal model can be specified into LTL formula, as LTL can describe both safety
property and liveness property, we will give a more precise preliminary analysis of
requirements. Our future work will mainly concentrate on the translation of extended
requirement diagram and Event-B model elements.

Acknowledgement. This work was supported by the National High-tech R&D Program of
China (863 Program) under Grant No. 2015AA015303; Project 61272083 supported by National
Natural Science Foundation of China; Supported by National key research and development
program 2016YFB1000802.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University
Press, Cambridge (2010)

2. Friedenthal, S., Moore, A., Steiner, R.: A practical guide to sysml. San Francisco Jung Inst.
Lib. J. 17(1), 41–46 (2012)

Fig. 14. All POs discharged

Distributed System Model Using SysML and Event-B 335

3. Laleau, R., Semmak, F., Matoussi, A., Petit, D., Hammad, A., Tatibouet, B.: A first attempt
to combine sysml requirements diagrams and b. Innov. Syst. Softw. Eng. 6(1–2), 47–54
(2010)

4. Butler, M., Hallerstede, S.: The Rodin formal modelling tool. In: The International
Conference on Formal Methods in Industry, p. 2. British Computer Society (2007)

5. Le, H.A., Thi, L.D., Truong, N.T.: Modeling and verifying imprecise requirements of
systems using Event-B. In: Huynh, V., Denoeux, T., Tran, D., Le, A., Pham, S. (eds.)
Knowledge and Systems Engineering. Advances in Intelligent Systems and Computing, vol.
244, pp. 313–325. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02741-8_27

6. Younes, A.B., Hlaoui, Y.B., Ayed, L.J.B.: A meta-model transformation from UML activity
diagrams to Event-B models. In: IEEE International Computer Software and Applications
Conference Workshops, pp. 740–745. IEEE Computer Society (2014)

7. Bousse, E., Katsuragi, T.: Aligning SysML with the B method to provide V&V for systems
engineering. In: The Workshop on Model-Driven Engineering, Verification and Validation,
pp. 11–16. ACM (2012)

8. Mentré, D.: SysML2B: automatic tool for B Project Graphical Architecture Design Using
SysML. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS,
vol. 9675, pp. 308–311. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33600-
8_26

9. Xu, H.: Model based system consistency checking using Event-B. Comput. Softw. (2012)
10. Krakora, J., Waszniowski, L., Pisa, P., Hanzalek, Z.: Timed automata approach to real time

distributed system verification. In: IEEE International Workshop on Factory Communication
Systems, Proceedings, pp. 407–410. IEEE (2004)

11. Lamsweerde, A.V.: Requirements engineering: from system goals to UML models to
software specifications. Wiley Publishing, Hoboken (2009)

12. Abrial, J.R.: The B-Book - Assigning Programs to Meanings. DBLP (1996)
13. Yu, E.S.K., Mylopoulos, J.: Understanding “why” in software process modelling, analysis,

and design. In: International Conference on Software Engineering, pp. 159–168. IEEE
Computer Society Press (1994)

14. Traichaiyaporn, K., Aoki, T.: Preserving correctness of requirements evolution through
refinement in Event-B. In: Software Engineering Conference, Vol. 1, pp. 315–322. IEEE
(2014)

336 Q. Zhang et al.

http://dx.doi.org/10.1007/978-3-319-02741-8_27
http://dx.doi.org/10.1007/978-3-319-33600-8_26
http://dx.doi.org/10.1007/978-3-319-33600-8_26

	Distributed System Model Using SysML and Event-B
	Abstract
	1 Introduction
	2 Background
	2.1 SysML
	2.2 Event-B

	3 From SysML Requirement Diagram to Event-B
	3.1 Event-B Machine Consistency

	4 Case Study: A Leader Election Algorithm
	4.1 The Initial Model
	4.2 First Refinement
	4.3 Model Verification

	5 Conclusion and Future Work
	Acknowledgement
	References

