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Abstract. For multi-antenna system, the difficulties of preforming spectrum
sensing are high sampling rate and hardware cost. To alleviate these problems,
we propose a novel utilization of distributed compressive sensing for the
multi-antenna case. The multi-antenna signals first are sampled in terms of
distributed compressive sensing, and then the time-domain signals are recon-
structed. Finally, spectrum sensing is performed with help of energy-based
sensing method. To evaluate the proposed method, we do the corresponding
simulations. The simulation results proves the proposed method.
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1 Introduction

Spectrum sensing is the base of cognitive radio. At present, some known methods
mainly conclude Energy-based algorithm, cyclostationary detection and eigenvalue-
based algorithm [1, 2]. Generally speaking, these methods are applied in the individual
antenna case. However, with the growing requirements of date rate and the improve-
ment of wireless communication technologies, multi-antenna technologies have already
been applied in many wireless communication systems. Subsequently, spectrum
sensing under the multi-antenna circumstances become a problem to be solved. Cur-
rently, some multi-antenna based spectrum sensing methods were proposed, such as
random matrix based methods and GLRT (generalized likelihood ratio test) methods
[3–7]. For random matrix based methods, the signals sampled from multiple antennas
are comprised of a random matrix, and then some parameters, such as eigenvalue, are
extracted to perform spectrum sensing.

GLRT-based methods are a kind of technologies as solving the problem of
multi-antenna spectrum sensing. In [4–6], some eigenvalues of sampled covariance
matrix are used as test statistic. In literature [7], GLRT is exploited directly as test statistic,
and the idea is evaluated in OFDM and MIMO system. It is well known that
multi-antenna technology bring some advantages for the wireless communication. On the
other hand, some disadvantages have also been introduced inevitably, such as too much
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data and high sampled frequency. Fortunately, compressed sensing provides a practical
idea to deal with these difficulties. In 2006, compressed sensing is proposed [8], and then
it has been fast applied to many fields, including the wireless communication, signal
processing and image processing. In the view of compressed sensing, sample and
compression are performed simultaneously, and the signal is sampled based on the signal
sparsity but not the bandwidth used in the Nyquist sampling theorem, which can alleviate
the computational complexity and hard cost. Meanwhile, in order to fully exploit the
correlation of inter-signal and intra-signal, the framework of distributed compressed
sensing is built on the base of the joint sparse model [9, 10], which bridge between
multi-antenna based wireless communication and compressed sensing. More impor-
tantly, computational complexity is further reduced because of the correlation structure.

In this paper, we obtain the sampled signals in terms of distributed compressed
sensing, which can reduce the hard cost and further decrease the subsequent compu-
tational complexity, and then the energy-based spectrum sensing is adopted. Because of
the utilizing of the correlation of multiple antennas, the sparsity in single antenna case
is extended to the multiple antenna case by virtue of joint sparse model. It follows that
higher reconstruction probability is obtained with the constriction of the same sensing
measurement.

2 The Description of the Proposed Method

2.1 Distributed Compressive Sensing

We suppose that the number of antennas is J, and the received signal ensemble can be
expressed as X ¼ x1 x2 � � � xJ½ �T , where xi 2 RN . In the framework of distributed
compressive sensing, the compressed measurements are written as

Y ¼ UX ð1Þ

where Y ¼ y1 y2 � � � yJ½ �T , U ¼
U1 0 � � � 0
0 U2 � � � 0
..
. ..

. . .
. ..

.

0 0 � � � UJ

2
6664

3
7775. For the individual sig-

nal, yi ¼ Uixi, where yi 2 RM ; Ui 2 RM�N .
It is well known that the concept of common sparsity is built on the single signal.

For multiple antennas, however, the multiple signals possess intra-signal and
inter-signal correlation. Joint sparse models (JSM), called common/innovation com-
ponent JSMS, were introduced to describe these characteristics, which includes three
specific models, named JSM-1, JSM-2 and JSM-3. Therefore, in the framework of
distributed compressive sensing, JSM is written uniformly as

Xj ¼ ZC þ Zj; j 2 f1; 2 � � � Jg ð2Þ

where ZC denotes the common component, and Zj is the innovation component.
Specifically, they can be sparsely represented as
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ZC ¼ WC �HC; HCk k0¼ KC

Zj ¼ Wj �Hj; Hj

�� ��
0¼ Kj

ð3Þ

where �k k0 denotes the l0-norm, e.g., the number of nonzero values of signal vector. In
this setting, the signal ensemble X can be rewritten as

X ¼ WH ð4Þ

where W ¼

WC Hj 0 � � � 0
WC 0 Hj � � � 0

..

. ..
. ..

. . .
. ..

.

WC 0 0 � � � Hj

2
6664

3
7775, H¼ HT

C HT
1 HT

2 � � � HT
J

� �T
.

The different sparsity assumptions regarding the common and innovation compo-
nent correspond to different models. When both of the common and innovation com-
ponents are sparse, we call it JSM-1 model. When there exist no common components in
the signal ensemble, we refer to it as JSM-2 model. In this model, each innovation
component of signal ensemble is sparse, and all the signals possess the same sparse
support but have different nonzero values in the same locations. A practical scenario
well-modeled by JSM-2 model is MIMO communication system we often encounter in
this paper. If the common component is not factorized sparsely, we name the model as
JSM-3 model. It is widely recognized that the signal ensemble from multiple antennas of
MIMO satisfy the condition of the common and innovation component. It follows that
we restrict out attention on JSM-2 model. Currently, the recovery algorithms in the
framework of JSMmodel are categorized into trivial pursuit and iterative greedy pursuit,
such as DCS-SOMP arisen from conventional OMP algorithm.

2.2 The Proposed Algorithm

In order to interpret the proposed method, we first show the block diagram in Fig. 1.
We can find from Fig. 1 that the proposed method consists of DCS, DCS-JOMP and
energy-based detection algorithm. We will introduce them in the following section,
respectively.

RF
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DCS JudgeSNRDCS-
JOMP

1x

2x

Jx

1 1 1y x= Φ

2 2 2y x= Φ

J J Jy x= Φ
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2 'y

'Jy threshold

0H

1H

Fig. 1. The block diagram of the proposed method
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For multi-antenna signals, the received signals fit with JSM-2 model. Therefore,
distributed compressed sensing can be applied to sample the multi-antenna signals.
Supposed that the sparsity of signal is K, the sampled signals in the framework of
compressed sensing can be expressed as

y1 ¼ U1x1 ¼ U1Wh1
y2 ¼ U2x2 ¼ U2Wh2
� � �
yJ ¼ UJxJ ¼ UJWhJ

8>><
>>:

ð5Þ

where xi; i ¼ 1; � � � ; J denotes the received signal from ith antenna. Ui; i ¼ 1; � � � ; J is
measurement matrix, W is the sparse basis, and h1 is sparse representation in the sparse
basis.

Joint reconstruction of distributed compressed sensing (DCS-JOMP) is described as
follows:

(1) Initialize. k is the times of iteration, X is the space spanned by coefficients vector
to be reconstructed. rj;k is the residual error. Let X ¼ ½�, rj;0 ¼ yj.

(2) Judgment of the correlation. The column corresponding to the biggest correlation

with rj;k�1 is picked out from UjW, i.e., nk ¼ arg max
n2 1;2...Nf g

PJ
j¼1

rj;k�1;/j;n

� ��� ��. Then
the space X is be updated to X ¼ ½X nk�.

(3) Updating of residual base, Kj;k ¼ Uj;X. Where Uj;X is the group of the selected
column of measurement matrix based on X ¼ ½X nk�.

(4) Updating of the residual error. The sparse representation after the each iteration is
denoted as hj;k ¼ ðK0

j;kKj;kÞ�1K0
j;kyj, so the residual error is expressed as

rj;k ¼ yj � Kj;khj;k.
(5) Stopping the iteration. When k[K, we stop the iteration.

By exploiting DCS-JOMP algorithm, we obtain the time-domain signals. And then
the error and noise are estimated to compute the SNR, further set the threshold. Finally,
energy-based method is employed to perform spectrum sensing. Specific process is
described in the following section.

For the conventional energy-based method, the test statistic is Z ¼ P2TW
n¼1

x2ðnÞ.
Where 2TW is the length of the received signals, T is the time interval, and W is the
bandwidth. The received signal is xðnÞ ¼ sðnÞþwðnÞ.

For simplification, but without loss of generality, we normalize the received signal
by the noise covariance, i.e., w0ðnÞ ¼ wðnÞ=rw, s0ðnÞ ¼ sðnÞ=rw. Therefore, the test

statistic reduces to Z ¼ PN
n¼1

y0ðnÞ2. In this situation, the binary hypothesis test can be

expressed in the form
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Z ¼

X2TW
n¼1

w0ðnÞ2; H0

X2TW
n¼1

s0ðnÞþw0ðnÞð Þ2; H1

8>>>><
>>>>:

ð6Þ

By analyzing (6), we can conclude that the received signal follows the central
chi-square distribution when no signal exists. Inversely, the received signal follows the
non-central chi-square distribution with the non-central parameter

d ¼
X2TW
n¼1

s0ðnÞ2 ¼
X2TW
n¼1

sðnÞ
rw

� 	2

¼
P2TW
n¼1

sðnÞ2

r2w
¼ 2TWPs

Pn
¼ 2TWc ð7Þ

Correspondingly, we can compute the detection probability and the false-alarm
probability

Pd ¼ PðZ[ k H1j Þ ¼ Quð
ffiffiffi
d

p
;

ffiffiffi
k

p
Þ ð8Þ

Pf ¼ PðZ[ k H0j Þ ¼ Cðu; k2Þ
CðuÞ ð9Þ

where Cð:Þ is Gamma function, Cð:; :Þ is the incomplete gamma function, Quð:; :Þ is the
generalized Marcum Q function, the k is the predetermined threshold. u ¼ TW is the
production of time and bandwidth. Generally speaking, we refer to the false-alarm
probability as constant, i.e., constant false-alarm probability, and then compute the
decision threshold. Finally, substitution of threshold into (8) yields the detection
probability.

3 Numerical Simulation and the Corresponding Analyzing

We first analyze the reconstruction error of compressed sensing and distributed com-
pressed sensing for the various number of antennas. In the simulation, we assume that
the signal is spare in the discrete cosine base, the length N = 64, the sparsity K is 4. The
noise follows the Gaussian distribution, SNR = 10 dB. The times of Monte Carlo is
500. The reconstruction algorithm of compressed sensing and distributed compressed
sensing are OMP algorithm and DCS-JOMP algorithm. The results are shown in
Fig. 2.

It can be seen that the reconstruction error reduces with the increasing of the
number of sensing measurements, which fit with the theoretical analysis. Additionally,
for distributed compressed sensing, the reconstruction error is inversely proportional to
the number of antennas. For example, for M = 20, the reconstruction error is 33.8%
when compressed sensing is adopted, the reconstruction error is 10.6% and 7.4% for 2
antennas and 4 antennas when we exploit distributed compressed sensing.
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To further evaluate the performance of the proposed method under the different
antennas, we as before take 2 antennas and 4 antennas as the example. SNR is 3 dB. In
the simulation, we use the detection probability under constant false-alarm probability
to measure the performance of the proposed algorithm. The simulation results are
illustrated in Fig. 3.

It is obviously observed that the detection probability of multi-antenna distributed
compressed is higher than that of compressed sensing, and the detection probability
varies with the number of antennas. For example, when M = 20, the detection prob-
ability is 82.1% when compressed sensing is adopted, the reconstruction error is 97.3%
and 99.4% for 2 antennas and 4 antennas.

In the following, we evaluate the detection probability under the different SNR.
The SNR varies from −15 dB to 10 dB. In addition, to compare with the conventional
energy-based detection algorithm, its detection probability is also provided. In this
simulation, the false-alarm probability is 0.05, the number of antenna J is 4. The
number of sensing measurements is M = 16, and the sparsity is 4. We compute the
threshold using (8), and then obtain the detection probability illustrated in Fig. 4.

It can been seen from Fig. 4 that the detection probability increases with the
increasing of SNR. Generally, the performance of the conventional time-domain
detection algorithm outperforms that of the proposed method. This is because that
compressed sensing leads to the wastage of the signal energy. For example, when the
detection probability reaches 100% for the conventional time-domain detection, SNR is
5 dB, and the sampled number is 64. For the proposed method, however, the number of
antennas and sensing measurements are 4 and M = 13 respectively when the detection
probability reaches 100%.
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Fig. 2. The relationship between the number of measurements and the reconstruction error
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4 Conclusions

To solve the problem of high sampling rate and hardware cost, we exploit the
intra-signal and inter-signal to sample the MIMO multi-antenna signals, which obvi-
ously decrease the sampling rate and hardware cost. Combining with energy-based
sensing method, we proposed a novel spectrum sensing. The proposed method perform
the nearly similar to the conventional time-domain spectrum sensing.

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of measurements M

D
et

ec
tio

n 
P

ro
ba

bi
lit

y

 

 
CS-Pd
CS-Pf
2-antenna DCS-Pd
2-antenna DCS-Pf
4-antenna DCS-Pd
4-antenna DCS-Pf

Fig. 3. The relationship between the number of measurements and the detection probability
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