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Abstract. Detecting signal interference and assessing signal quality are
essential tasks to ensure the normal communication within an area. As
for traditional methods, we have to take field measurements after setting
up a base station which needs to obtain huge data in low efficiency.
Aiming at this particular problem, this paper proposed to assess signal
quality by compressed sensing. Method of compressed sensing used in
signal quality assessment is firstly discussed. After that, we introduced
the specific process when assessing. At last the results of reconstructing
the measured data and the predicted data separately shows that it could
met the accuracy requirements of signal quality assessment.
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1 Introduction

Whether for military network or civil network, with the increase of network
equipments, factors on interference of signal quality is more and more, espe-
cially in the complex electromagnetic environment, thus ensure the quality of
wireless signals within range of base station has become a key problem [1]. In
many complex environment, it is unrealistic for assessing signal quality with field
measurement everywhere. In addition, before the erection of base station, if not
predict the signal quality within range of it in advance, it may result in the risk
of demolition and reerection because of a terrible erection position. Therefore we
need to assess signal quality in advance until find out a good erection position.
Thus, consider to sample sparse point and look for an appropriate algorithm to
recover the signal quality of whole area. Compressed sensing theory has broken
the traditional Nyquist Sampling Theorem. It does not consider the frequency
characteristics of signals, but using the sparsity of signal in a transform domain,
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project the signal to a low dimensional space by using a measurement matrix
irrelated with basis matrix, to reconstruct the signal by solving a convex opti-
mization problem [2,3]. The reason of choosing this method is that nobody has
used compressed sensing to assess signal quality through the literature retrieval,
aimed to solve the contradiction between large amount of signal data and lim-
ited resources in complex network environment. Considering the detected signal
strength is sparse under natural conditions, collecting a small number of sig-
nal strength data can recover the high-precision signal quality map by using
reconstruction algorithm based on compressed sensing theory. This paper will
introduce the key problems of compressed sensing and the method of detect-
ing electromagnetic interference, then combine these two term, and construct a
sparse model of signals to realize the signal quality assessment.

2 Signal Quality Assessment Method Based
on Compressed Sensing

2.1 Construct Regional Sparse Model

The premise of compressed sensing is that signal can express sparsely under
the selected basis matrix, so how to select a reasonable basis matrix makes the
original signal become sparse after transformation is the key problem. For a
one-dimensional signal X ∈ RN , which can be linear representation as X =
ΨS on the basis matrix ΨT = [Ψ1, Ψ2, . . . , ΨN ], where S is called the sparse
coefficient [4,5].

In the actual situation, assuming an area is grid distribution, then divide it
into I × J homogeneous areas. Due to the electromagnetic wave signal has a
spatial correlation, so each area after divided is considered as a sample point.
After that, convert I × J regional matrix into one-dimensional N × 1 matrix
X(N = I × J), to facilitate the measurement matrix to measure. Considering
the sparsity of electromagnetic wave signal, we chose the Fast Fourier Transform
as a basis matrix. Specifically, if S is the two-dimensional Fourier Transform
of X, it can get s = Wx, with s = vec(S), x = vec(X). (If V is a k × 1
matrix, then vec(V ) means the kl × 1 vector stacked by columns of V, that is
vec(V ) = [v11, . . . , vl1, . . . , v1k, . . . , vkl]T ). W is the Discrete Fourier Transform
matrix W [m, k] = e−j2πmk/l, s is sparse.

2.2 Construction of the Unit Measurement Matrix

The construction of measurement matrix is the core problem of compressed sens-
ing. One of the focuses is to measure and preserve most of the useful information
of original signal, so that the reconstruction and recovery are meaningful. Other-
wise once the information is missing while doing measurement, we can foresee the
recovery signal must be far from the original signal. Another focus of construct-
ing measurement matrix is to ensure it is not related with the vast majority
of basis matrix, and can be used for the majority of compressed signal [6,7].
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Currently, the measurement matrix which satisfy these conditions and has been
widely applied includes Fourier matrix, Bernoulli random matrix, Gaussian ran-
dom matrix, etc.

Combined with the previously constructed sparse model, this paper uses a
special measurement matrix transformed by the unit matrix [8], specific steps
are as follows:

1. Ramdomly disturbing a unit matrix of N × N and extract M rows, get a φ
matrix of M × N (a subset of unit matrix), 1 only shows up one time in each
row with others are all 0.

2. Multiplying φ by X, then get the matrix Y of M × 1 after measurement. Due
to the characteristics of φ, its each row multiplied by X makes only one value
be retained, the others are 0. It means we only select one area from X, and
the characteristics of φ would determine the selection will not be repeated
later.

2.3 Signal Reconstruction Algorithm

When reconstruct the signal, the length of measurement value M is far less than
the length of original signal N, thus the reconfiguration problem is essentially
a problem of solving underdetermined equations, that is the minimum 0 norm
problem [9]. Such as shown in formula (1).

min‖ΨT X‖0 s.t. AX = φΨX = Y (1)

Superficially, it seems to be a NP hard problem. But because the signal
is compressible and it has been proved that if the measurement matrix meet
the property of RIP(Restricted Isometry Property), this L0 problem can be
transformed to L1 problem by Candes, Tao and Donoho, such as formula (2)
shows.

min‖ΨT X‖1 s.t. AX = φΨX = Y (2)

Based on the above problems, new reconstruction methods are proposed con-
tinually. Now it mainly including greed tracking algorithm, convex optimization
algorithm and reconstruction algorithm based on bayesian framework, etc. [10].

Considering the greedy tracking algorithm has characteristics of high recovery
rate and it is easy to implement, OMP (Orthogonal Matching Pursuit), as the
reconstruction algorithm, is chosen to prove the validity of the project [11,12].
According to the selected areas of the observation matrix we can get these Y
signal strength values, then reconstruct the signal of I × J by OMP.

3 Signal Quality Assessment

For a large scale of communication network, there may be multiple base stations,
radios and other communication equipments in an area. In this complex elec-
tromagnetic environment, as the communication network topological structure
and spectrum allocation been finished, there may not have a good communica-
tion quality within the scope of cover. Thus, assessing the quality to ensure the
rationality of the communication network construction is necessary.
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3.1 Electromagnetic Wave Propagation Attenuation Analysis

In actual communication, considering the attenuation between transmitting end
and receiving end because of complex terrain, the transmission process is more
complex. Thus the electromagnetic wave model of free space transmission must
be modified based on these factors. According to the result of field measurement,
compared the predicted results of deterministic model (ITU-RP.526) with the
semi empirical and semi deterministic model (Longley-Rice), it shows that the
predicted result of ITU-RP.526 model is closer to the actual result as shown in
Fig. 1. So ITU-RP.526 model can take the place of field measurement to compare
with reconstructed signal. Specific steps are as follows:

1. To start with, analyze the ground type and determine the irregularity of the
terrain with Δh. The terrain is smooth if Δh ≤ 0.1 × Rmax, otherwise exists
obstacles, where Δh is the height difference between transmitter and receiver,
Rmax is the maximum radius of the first Fresnel region on the propagation
path.

2. Suppose the terrain is smooth, then judge whether the horizon is blocked with
dlos =

√
2ae(

√
h1 +

√
h2). If the distance between transmitter and receiver

d ≥ dlos, so calculate the diffraction attenuation by out of horizon path,
otherwise using the horizon path.

3. If there are obstacles on the terrain, then judging the type of obstacle firstly,
which is divided into blades and circles. After that, calculate the number of
obstacles.

4. Finally, for the different types of obstacle models, calculate the diffraction
attenuation Lp of electromagnetic wave refer to the ITU-RP.526 proposal [13].

Fig. 1. The result of comparison between field measurements and prediction of simu-
lation models.
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3.2 Frequency Deviation Inhibitory Factor

For a large scale of communication network, multiple base stations are usually
set up in an area. Because of the limitation of frequency resources, different base
stations may be assigned to different working frequencies. It may cause interfer-
ence signals to fall into the receiver’s frequency band which can affect the signal
quality that can hardly communicate. Therefore, it is neccessary to introduce
the frequency deviation inhibitory factor(OCR), which is used to measure the
suppression of the receiver’s selective curve to the interference spectrum [14]. It
is defined as formula (3):

OCR(Δf) = −10 log

∫ ∞
−∞ P (f)|H(f + Δf)|2 df

∫ ∞
−∞ P (f) df

(3)

Then, the signal quality can be assessed by formula (4).

SNR = Pd −
n∑

i=1

Pi (dB) (4)

The Pd and Pi are according to formula (5) to calculate.
{

Pi = Pt + Gt + Gr − Lp − OCR(Δf)
Pd = Pt + Gt + Gr − Lp

(5)

where the Pi is interfering signal strength, Pd is useful signal strength, Pt is
transmitting power, Gt is transmitter antenna gain, Gr is receiver antenna gain,
Lp is attenuation values, OCR is frequency deviation inhibitory factor.

4 Experiment and Simulation Analysis

4.1 Simulation of Field Measurements Data

In order to verify the correctness of the proposed signal quality assessment
scheme based on compressed sensing, the actual data measured by a certain
area is used to take experimental comparison.

In Table 1, the base station is located at 80.94219◦E, 41.07261◦N , with the
antenna basic parameters of the down-tilt angle is 2◦, the azimuth is 150◦, the
height is 58 m, and the carrier power is 150 W. The original data and the recon-
structed result are shown in Fig. 2.

Because the data of field measurements is useful signal strength, thus it can
be used to reconstruct the SNR. From the Fig. 3, it can be seen that as the
number of samples increases, the error of the reconstruction decreases, although
there are some cusps on the curve caused by bad samples. When the sampling
point is more than 80%, the original signal is basically perfectly reconstructed,
but at the cost of time and resource.
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Table 1. Part of signal strength of field measurements

Longitude (◦E) Latitude (◦N) Distance from
the base
station (m)

Signal
strength
(dB)

Predicted
results
(dB)

Reconstructed
results (dB)

80.94202000 41.07396167 151 −80.13 −79.50 −77.43

80.94194667 41.07422833 182 −59.69 −56.71 −62.85

80.94190500 41.07436333 197 −57.63 −58.37 −54.71

80.94185667 41.07450333 214 −57.00 −59.58 −56.53

80.94174167 41.07479167 247 −59.50 −62.20 −61.88

80.94167333 41.07494167 265 −63.67 −61.74 −66.04

80.94159833 41.07509333 284 −72.13 −74.51 −74.85

80.94151500 41.07524833 302 −78.64 −77.98 −75.90

80.94132667 41.07556667 342 −67.29 −70.21 −71.60

80.94122333 41.07573000 363 −65.00 −66.14 −63.53

Fig. 2. Reconstructed result with 75% sampling point, Pe = 0.0287.
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Fig. 3. Sampling proportion versus reconstruction error.
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4.2 Simulation of Predicted Data by ITU-RP.526 Model

In order to ensure the practicality of the scheme, the signal quality of the sur-
rounding area can be estimated before set up the base station, and verify it by
the ITU-RP.526 model. The result shows as Fig. 4.

Fig. 4. Reconstructed result of prediction of ITU-RP.526 model, Pe = 0.0737.

The jammers are located at

1. 12.31342◦E, 50.23786◦N , frequency is 150.42 MHz, power is 40 W.
2. 12.30368◦E, 50.24468◦N , frequency is 150.61 MHz, power is 30 W.
3. 12.30154◦E, 50.22156◦N , frequency is 150.35 MHz, power is 20 W.

The useful receiver is located at 12.33161◦E, 50.23611◦N , frequency is
150.55 MHz, power is 30 W.

The results show that when sampling points are 25%, it is already clear to
distinguish the area of high SNR from low SNR. It meets actual demand and
proves the correctness of the scheme.

5 Conclusion

The paper introduced an estimate method based on compressed sensing. The
method can solve the enormous data problems benefits from the advantage of
compressed sensing, which works well on data reconstruction and compression.
The results show that the new algorithm meets our demand both in field mea-
surement and model prediction. The future work is to solve the problem of the
reconstruction error caused by terrain mutation.
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