
Variable Dimension Measurement Matrix
Construction for Compressive Sampling

via m Sequence

Jingting Xiao(&), Ruoyu Zhang, and Honglin Zhao

Communication Research Center, Harbin Institute of Technology,
Harbin 150001, China

hitxjting@163.com, hitzhangruoyu@163.com

hlzhao@hit.edu.cn

Abstract. Signal acquisition in ultra-high frequency is a challenging problem
due to high cost of analog-digital converter. While compressed sensing
(CS) provides an alternative way to sample signal with low sampling rate, the
construction of measurement matrix is still challenging due to hardware com-
plexity and random generation. To address this challenge, a variable dimension
deterministic measurement matrix construction method is proposed in this paper
based on cross-correlation characteristics of m sequences. Specifically, a lower
bound of the spark of measurement matrix is derived theoretically. The proposed
measurement matrix construction method is applicable to compressive sampling
system to improve the quality of signal reconstruction, especially for modulated
wideband converter (MWC) architecture. Simulation results demonstrate that
the proposed measurement matrix is superior to random Gauss matrix and
random Bernoulli matrix.
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1 Introduction

Signal processing and communication technology will inevitably involve the sampling
process. Nyquist sampling theorem is recognized as basic theory in sampling theory,
and it reveals that the required sampling frequency must be greater than or equal to
twice the highest frequency sampling signal.

Communication signals always have certain structures and characteristics. For
sparse signal processing, compressed sensing (CS) [1] is a revolutionary technology in
recent years. It is a kind of effective signal acquisition method that sample signal at a
much lower frequency than the Nyquist sampling frequency if signal is sparse in some
domain. According to small amount of observations, the original signal can be
recovered with high accuracy.

Designing measurement matrix is an important research direction. In order to
ensure that the signal is not lost in the process of observation, measurement matrix
needs to satisfy certain properties. RIP (Restricted Isometry Property) [2] is a sufficient
condition for measurement matrix to be satisfied. However, it is proved that
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measurement matrix satisfies RIP property is a combinatorial problem, and there is no
effective method to verify whether measurement matrix satisfies RIP property in
polynomial time. A feasible alternative is to evaluate mutual coherence of measurement
matrix. It is proved that the smaller cross-correlation value of the measurement matrix
is, the more likely the measurement matrix satisfies RIP. The widely used measurement
matrix are random Gauss matrix, Bernoulli matrix, partial Fourier matrix, partial
Hadamard matrix, Toeplitz matrix and so on. Random matrix such as random Gauss
matrix and Bernoulli matrix, their dimension can be arbitrarily generated and their
performance are good. It requires large storage space and high complexity of hardware
implementation, which limit CS using in practical application. Partial orthogonal
matrix such as partial Fourier matrix, partial Hadamard matrix and structured matrix
such as Toeplitz matrix, their hardware complexity are greatly reduced compared with
random matrix. However, the dimension of these measurement matrix is fixed, which
limits actual engineering application in signal acquisition. Moreover, the accurate
probability of signal recovery needs to be improved.

In this paper, a variable dimension deterministic measurement matrix construction
method is proposed based on cross-correlation characteristics of m sequences. Firstly,
the proposed method can sample signal with variable dimension compared with
existing methods [3]. Then, it reduces hardware complexity especially in the block
diagram of MWC system. Meanwhile, the signal reconstruction performance can be
further improved by using proposed method, so as to alleviate the number of required
measurements.

2 Compressed Sensing Overview

If x 2 R
N can be sparsely represented in orthonormal basis W 2 R

N�N , f 2 R
N can be

recovered from y 2 R
M which is a small number of data MðM � NÞ.

The sampled signal via compressive sensing can be expressed as:

y ¼ Uf þ z¼UWxþ z ð1Þ

If the N dimensional time domain signal f 2 R
N�1 can be expanded in a linear

group w ¼ wif gNi¼1, we can get formula (2).

f ¼
XN
i¼1

wixi ¼ wx ð2Þ

where x is coefficient of the N dimensional vector, KðK � NÞ is the number of
nonzero elements. The measurement matrixUM�N is used to observe x in time domain.

y ¼ Uf ¼ UWx ¼ Hx ð3Þ

where UW ¼ H.
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Because x is K-sparse, the process of recovering x through observations y can be
transformed into solving the following linear programming problem:

min
x

xk k0 s: t: y ¼ Hx ð4Þ

where min
x

xk k0 , i : xi 6¼ 0f gj j denotes l0 -norm of x. l0 -minimization problem is a

NP hard problem. In CS, it is usually transformed into l1 -minimization problem which
is tractable.

min
x

xk k1 s: t: y ¼ Hx ð5Þ

where min
x

xk k1 , i : xi 6¼ 0f gj j denotes l1 -norm of x. (5) is l1 -norm optimization to

solve x, and we can get reconstruction signal bf at the same time. In order to obtain the
accurate reconstruction of f , measurement matrix should satisfy RIP.

Definition 1. If and only if a given constant e 2 ð0; 1Þ meet:

ð1� eÞ fk k22 � Ufk k22 � ð1þ eÞ fk k22 ð6Þ

If K-sparse signal f satisfies (6), we call matrix U satisfies RIP ðN;K; eÞ. It is quite
difficult to judge whether a matrix satisfies RIP. In addition to RIP, mutual correlation
can be utilized to measure the ability of measurement matrix U for reconstructing
sparse signal [4], which is defined as follows:

q ¼ max
s 6¼t

U sð Þ;U tð Þh ij j
U sð Þk k2 U tð Þk k2

ð7Þ

where U sð Þ, U tð Þ is column s and column t of U respectively, � ; �h i is inner product
of two column vectors. The smaller q is, the stronger non-correlation of U is.

The RIP condition is consistent with the uncorrelated constraint condition in the
physical sense. (6) requires that sub matrix composed of arbitrary K columns should be
approximately orthogonal. That is to say, correlation coefficient of U is small [5].

Definition 2. The spark of U is

Spark Uð Þ ¼def min nk k0: n 2 UNullspR�
� � ð8Þ

where UNullspR� ¼
def

n 2 RN : Un ¼ 0; n 6¼ 0
� �

. It can be proved that if and only if
Spark Uð Þ[ 2k, k sparse signal x can be obtained by solving l0- minimization problem
with exact approximation [6].
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3 Variable Dimension CS Matrix Construction and Analysis

The m sequence is also called the longest linear feedback shift register sequence, which
is pseudo randomness, sharp autocorrelation and small cross-correlation. In the con-
struction of CS measurement matrix, we mainly use the good correlation property. The
cross-correlation function of a sequence is defined as follows:

Ra;b sð Þ ¼
XM�1

i¼0

aibiþ s ð9Þ

where the cycle of a a0; a1; � � � ; aM�1ð Þ and b b0; b1; � � � ; bM�1ð Þ are M. The
cross-correlation coefficient is defined as:

qa;b sð Þ ¼ 1
n

XM�1

i¼0

aibiþ s ð10Þ

3.1 Construction Process of CS Matrix

The construction process of measurement matrix in this paper is shown in Fig. 1.
According to the actual length of signal is N, appropriate sub matrix dimension

P� P is selected which satisfies N=2�P�N.
On the basis of signal cycle P, m sequence optimum pairs a ¼ fa1 a2 a3 � � � aP�1g

and b ¼ fb1 b2 b3 � � � bP�1g are generated by correlation verifying. Where P ¼ 2r � 1
and r is the number of shift registers.

The following Toeblitz matrix A and B are achieved by circular shift of m sequence
optimum pairs a ¼ fa1 a2 a3 � � � aP�1g an b ¼ fb1 b2 b3 � � � bP�1g respectively.

Toeblitz matrix          
is obtained by circular 
shift of  m sequence

Toeblitz matrix          
is obtained by circular 
shift of  m sequence 

Generate m sequence optimum pairs
and

Cascade 
matrix

and
obtained      

Selecting the 
first      

column 
constitutes

Generate      subsets                                      
randomly according to the number of observations

Calculate  cross-correlation values for each subsets

            
Calculate

            

Select the corresponding 
row sequence based on 

Obtain 
observation 

matrix      with        
dimension 

Fig. 1. Construction process of measurement matrix
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A¼

a0 a1 a2 � � � aP�1

a1 a2 a3 � � � a0
a2 a3 a4 � � � a1
..
. ..

. ..
. . .

. ..
.

aP�1 a0 a1 � � � aP�2

2666664

3777775;B¼
b0 b1 b2 � � � bP�1

b1 b2 b3 � � � b0
b2 b3 b4 � � � b1
..
. ..

. ..
. . .

. ..
.

bP�1 b0 b1 � � � bP�2

2666664

3777775; ð11Þ

Cascade matrix A and B in the following manner to form U1. The dimension of
Matrix U1 is P� 2P.

ð12Þ

Selecting the first N column constitutes U2.

U2 ¼ ½u1 u2 u3 � � � uN 	: ð13Þ

If we have sampled M observations, we can randomly generate S subsets Ci 

1; 2; � � � ;Nf g; i ¼ 1; 2; � � � ; S that meet Cij j ¼ M. Calculate li:

li ¼ max
1� k; l�N

k 6¼ l

\uCi;l;uCi;k [

uCi;l

�� ��2
2
uCi;k

�� ��2
2

�����
�����; i ¼ 1; 2; � � � ; S: ð14Þ

Then, choose opt ¼ argminflig; i ¼ 1; 2; � � � ; S, and Copt is the optimal subset.
Selecting the corresponding line in U2 on the basis of Copt, measurement matrix is
constructed.

H ¼ U2ðCopt; :Þ: ð15Þ

3.2 Analysis of the Proposed CS Matrix

It is easily got that m sequence optimum pairs has three cross-correlation values
by theory analysis.

Ra;b sð Þ 2 �1;�1� 2
rþ 2ð Þ
2b c;�1þ 2

rþ 2ð Þ
2b cn o

ð16Þ

where r is an even number that cannot be divisible by 4. �b c is rounding down the
objective. The maximum cross-correlation value of the measurement matrix can be
obtained. [7]
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l Urð Þmax¼ max
1� l 6¼k�N

\ul;uk [
ulk k22 ukk k22

�����
����� ¼ max

1
n
;
1þ 2

rþ 2ð Þ
2b c

n
;
�1þ 2

rþ 2ð Þ
2b c

n

 !

¼ 1þ 2
rþ 2ð Þ
2b c

n
ð17Þ

The lower bound of the spark value of the constructed measurement matrix can be
calculated.

S Uð Þ� 1þ 1
l Uð Þmax

; ð18Þ

where r cannot be divisible by 4.
We can obtain S Uð Þ=2� k from the previous theoretical analysis, then

k\
1
2

1þ n

1þ 2
rþ 2ð Þ
2b c

 !
: ð19Þ

If (18) is satisfied, signal can be reconstructed exactly. For variable dimensional
matrices H, rows with small cross correlation values are selected based on M, so that
the upper bounds may be reduced.

k\
1
2

1þ n

1þ 2
rþ 2ð Þ
2b c

 !
or

1
2

1þ n

�1þ 2
rþ 2ð Þ
2b c

 !
: ð20Þ

4 Performance Evaluation

In this section, we use MWC to show the performance of the proposed measurement
matrix described in the previous section. MWC for sub-Nyquist sampling system [8] is
shown in Fig. 2. The sampled signal passes through m parallel channels, and each row
of measurement matrix corresponds to each parallel channel. Signals are multiplied in
each channel with modulation sequence. Then, they pass through low pass filter, and
finally it sample at a low rate. These is the signal acquisition process.

Suppose function expression of the original analog signal is:

xðtÞ ¼
XN=2
n¼1

ffiffiffiffiffiffiffiffiffiffi
EnBn

p
sincðBnðt � snÞÞcosð2pfnðt � snÞÞ: ð21Þ

The energy coefficient En and the time delay sn are randomly set. Signal bandwidth
is Bn ¼ 50 MHz, and the carrier frequency fn is randomly distributed in ½0; 5	 GHz,
which means that Nyquist sampling frequency of the signal is fN ¼ 10 GHz at least.
According to the number of parallel channels MWC is 50, the original analog signal
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spectrum can be divided into 195 equivalent blocks, and this sets cutoff bandwidth for
low-pass filter in each channel and sampling frequency for low speed analog-to-digital
converter. Therefore, the total sampling rate of MWC is 50� 51:3 � 2:565 GHz, and
the dimension of measurement matrix needed for MWC is 50� 195. The m sequence
cycle is P ¼ 127 ¼ 27 � 1, which means requiring 7 stage shift registers. Select m
sequence optimum pairs x7 þ x3 þ x2 þ xþ 1 and x7 þ x3 þ 1. Then H 2 R

50�195 is
constructed based on the steps of Sect. 3. In this paper, measurement matrix con-
struction requires only two pairs of cyclic shift registers to obtain m sequences. The
mixing sequences of other channels can be obtained by cyclic shifts of the generated m
sequences. Compared with the traditional random measurement matrix, measurement
matrix constructed in this paper greatly reduces the required storage space and is easy
to implement by hardware.

In this article, all simulations are based on MWC for sub-Nyquist sampling sys-
tem. Reconstruction algorithm is Orthogonal Matching Pursuit (OMP) algorithm [9]
(Fig. 3).

h(t)

p1(t)

y1(t)

h(t)

pi(t)

yi(t)

h(t)

pm(t)

ym(t)

x(t)
t=nTs

t=nTs

t=nTs
Low pass

Fig. 2. Block diagram of modulated wideband converter (MWC)
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Fig. 3. Original signal waveform
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Fig. 4. Reconstructed signal waveform
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Figure 4 shows the time domain and frequency domain waveform of reconstructed
signal which uses the measurement matrix constructed in this paper. The measurement

matrix constructed in this paper is used as mixed function PiðtÞ. When the sampling
frequency is only 1/4 of Nyquist frequency, the original analog signal can be restored
almost without distortion.

Figure 5 compares the probability of successful recovery of the signal under dif-
ferent frequency band between the proposed measurement matrix and the Bernoulli
measurement matrix for signal acquisition. It can be seen clearly that when frequency
band number of analog signals is 6, the signals can still recover almost 100% using the
proposed measurement matrix. When frequency band of original analog signal con-
tinues to increase, success rate of analog signal restoration using the proposed mea-
surement matrix is still higher than that of Bernoulli measurement matrix. Compared
with Bernoulli measurement matrix, the designed measurement matrix occupies less
storage and hardware resources. At the same time, it shows better performance, high
recovery probability and high reliability in practical applications.

The recovery probability of Gauss signal and 0–1 signal under different sparsity is
conducted. Figures 6 and 7 are comparisons of success reconstruction ratio of the
proposed measurement matrix and the random Gauss measurement matrix under Gauss
signal and 0–1 signal respectively. The dimension of measurement matrix is 50� 195.
For Gauss signal, random Gauss measurement matrix cannot guarantee accurate
reconstruction of the signal when sparsity is 40. However, the measurement matrix
designed in this paper still guarantee success rate of reconstruction approaching 100%.
For 0–1 signal, performance of signal reconstruction is worse than Gauss signal.
However, compared with the random Gauss measurement matrix, the maximum
reconstruction probability gain is 45% if using the proposed measurement matrix in this
paper.
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5 Conclusion

To alleviate the hardware complexity of random measurement matrix. A variable
dimension measurement matrix construction method is proposed in this paper based on
characteristics of m sequences. A lower bound of the spark for the proposed matrix is
obtained by theoretical derivation, which shows the proposed matrix is feasible for
signal measurement. Additionally, the method of measurement construction can be
extended to partial orthogonal matrices and Toeplitz matrices to realize variable
dimension measurement matrix, which is a variable dimension construction framework
for measurement matrix. Simulation results demonstrate that the proposed measurement
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Fig. 6. Recovery probability comparison under Gauss signal
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matrix is superior to random Gauss measurement matrix and random Bernoulli matrix
for both Gaussian and 0–1 signals in terms of the probability of success reconstruction.
For sub-Nyquist sampling architecture MWC, it saves hardware storage resources
significantly due to high reconstruction probability.
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