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Abstract. This paper presents a distributed, compressive multiple tar-
get localization and tracking system based on wireless fiber-optic sensors.
This research aims to develop a novel, efficient, low data-throughput mul-
tiple target tracking platform. The platform is developed based on three
main technologies: (1) multiplex sensing, (2) space encoding and (3) com-
pressive localization. Multiplex sensing is adopted to enhance sensing
efficiency. Space encoding can convert the location information of multi-
target into a set of codes. Compressive localization further reduces the
number of sensors and data-throughput. In this work, a graphical model
is employed to model the variables and parameters of this tracking sys-
tem, and tracking is implemented through an Expectation-Maximization
(EM) procedure. The results demonstrated that the proposed system is
efficient in multi-target tracking.
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1 Introduction

Indoor environments monitoring has been demanded in many areas. The appli-
cations include human counting, tracking, identification, activity recognition,
and situation perception, etc. The purposes are to provide secure and intelligent
working and living spaces to users through the surveillance of the environments.
Among these applications, human tracking is a very challenging but interesting
application, and is receiving more and more attentions. Traditional human track-
ing systems in indoor environments are based on video cameras. Such systems
have been widely applied due to its visual characteristic [1]. Nowadays, some
wireless sensor based human tracking systems have been developed and demon-
strated with a satisfied performance especially under severe conditions such as
poor illumination, low computation, disguise, and so on.

The wireless sensor based human tracking systems are advantageous in (1)
large surveillance area; (2) low data throughput; (3) robustness; (4) multiple
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Fig. 1. (a) Simplex fiber-optic sensing; (b) duplex fiber-optic sensing; (c) multiplex
fiber-optic sensing.

sensing modalities. Radar, sonar, acoustic sensor based tracking systems are
proposed in [3,4]. Radar-based systems demand a large amount of power supply,
therefore, they are usually applied in military fields [2]; while acoustic sensor
based systems are prone to be interfered by noise, and their performance is
limited in silent environments. The pyroelectric infrared (PIR) sensor is able to
detect the infrared irradiation of human motions, it is appropriate to be used in
human tracking. A typical work is proposed in [5], which uses wireless distributed
pyroelectric sensors to achieve multi-human tracking and identification.

Whatever sensor is used to form a human tracking system, the goals are to
implement low-data-throughput and energy-efficient sensing. Recently compres-
sive sensing technology has been proposed and applied in image processing and
information retrieval [6,7]. It has been proved that compressive sensing can fur-
ther reduce the data samples but still guarantee the successful reconstructions.
Inspired by this technique, we propose a wireless sensor based human tracking
platform using compressive sensing. Furthermore, we extend compressive sensing
concept from data processing to sensing mode and sampling geometry, namely,
we start compress measurements in sensing and sampling phases.

Other than the typical wireless sensor based human tracking systems, mainly
the PIR sensor based systems, in this paper, we propose to use a new sensing
modality, fiber-optic sensors to implement human tracking. Compared with PIR
sensors, fiber-optic sensors are more suitable to human tracking. By adopting
multiplex sensing, space encoding and compressive localization, the sensing effi-
ciency and data compression are enhanced. The multi-target tracking is achieved
through a graphical model and expectation-maximization (EM) approach.

2 System Model

2.1 Multiplex Fiber-Optic Sensing

As we know, sensing is the process that converting physical information into
signals that can be read and observed by an instrument. The fiber-optic sensors
can be used to convert the presence and pressure information of targets into
light intensities to enable localization and tracking. Multiplex sensing technique
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is inspired by the antenna of insects which is able to increase the utilization ratio
of single sensor cells. Here, in our system, we employ multiplex sensing to enable
each fiber-optic sensor to detect multiple regions rather than just one region. In
this way, all the sensors can be fully utilized and the number of sensors needed
can be reduced dramatically. Such a method can improve the sensing efficiency
but at a price of increasing ambiguities in localization. The fiber-optic sensing
formats are shown in Fig. Compared with simplex sensing (Fig. 1(a)), multiplex
sensing (Fig. 1(b), (c)) consumes less sensors to cover the same size regions.

2.2 Space Encoding Schemes

Space encoding is to segment the monitored area into different blocks and use a
certain sensors to encode each block. Thus, when a target appears in a certain
block, the corresponding code indicates the target’s location. The purpose of
using space encoding technology is to enhance the feasibility and efficiency of
monitoring. Fiber-optic sensors are appropriate for space encoding due to its
flexibility and detection modality. There are multiple space encoding schemes
suitable for fiber-optic sensors. The ideal encoding scheme is named decimal
encoding, in which a single block is encoded by only one sensor. Apparently, this
encoding scheme is able to get a high accuracy with a minimum of ambiguity. The
number of sensors, however, could be very large for a wide area. In comparison,
binary encoding scheme can reduce the sensor consumption dramatically. For
example, encoding a 4 blocks area, decimal encoding scheme needs 4 sensors,
while binary encoding scheme only needs 2 sensors, as shown in Fig. 2.
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Fig. 2. Space encoding for a 4-blocks region. (a) Decimal encoding scheme; (b) binary
encoding scheme.

2.3 Distributed Binary Space Encoding

Suppose n fiber-optic sensors are available in the system, and they are used to
monitor a space which is divided into m blocks γ = {γ1, γ2, · · · , γm}. Each block
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Fig. 3. Illustrations of space encoding for (a) one target case; (b) two targets case.

γi is encoded by n fiber-optic sensors, and the corresponding code will be a n-
bit binary string, represented by Ci = {ci1, · · · , cin}, as shown in Fig. 3. cij is
generated when a target presents in jth block, so

cij = I(Ωi ∩ ϕ(γj)) (1)

where I(·) is a logic function whose output is “0” or “1”; Ω is the sampling geom-
etry of sensor i; ϕ(r) is the target at location r; and ∩ represents bit-wise AND
operation. Therefore, with n fiber-optic sensors deployment, the observation area
is encoded into a set of n-bit codes.

When only one target presents within the observation area, the measurement
y, which is a n × 1 vector, is given by

y = Cx1 (2)

where C = [cij ]T , which is a n × m matrix, and x1 = I(r ∈ γ), which is a m × 1
binary vector with only one ‘1’ element.

When K targets present within the observation area, the measurement n×1
vector, y becomes

y =
K∪

k=1
Cxk = C � x (3)

where ∪ denotes the bit-wise OR operation, xk is the measurement vector for
the kth target, � denotes the saturation multiplication, i.e., A � x = I(Ax ≥ 1)
if the upper bond is 1 and I is a matrix with only ‘1’s. The example of the binary
measurement sequence for one and two targets cases are shown in Fig. 3.

2.4 Compressive Localization

The complexity of the compressive localization for multiple targets comes from
the bit-wise OR operation in Eq. 3. To localize K targets with small errors, it
requires a high degree of independence among the codes. However, an increase
of the independence will lead to an increase of sensors.
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Given the space codes matrix H, the binary compressive localization problem
is solved by [8]

x̂ = argmin
x

‖x‖1 s.t. y = H � x (4)

where y is the binary measurement. For simplicity purpose, the nonlinear con-
straint, y = H � x, can be replaced by a linear constraint, y = HX by rounding
the real number valued solution to a binary vector. Alternatively, the constraint
can be further replaced by the binary compressive sensing constraint, y = H ⊕x.
The original problem is finalized as

x̂ = argmin
x

‖x‖1 s.t. y = [H2I][x; z] (5)

where I is the identity matrix and z > 0 is an auxiliary vector.
The selection of two solutions is determined by the number of targets and

the code matrix.

3 Graphical Model Based Space Decoding and
Multi-target Tracking

3.1 Graphical Model

Multiple target tracking is a challenging issue due to the involvement of a bunch
of unknown variables and complex conditions. With different characteristics of
these variables in multi-target tracking systems, the system models under various
conditions can be summarized to:

Fig. 4. Multi-target tracking model with unknown number of false alarms.
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Case 1 - known data-to-target association
Case 2 - unknown data-to-target association
Case 3 - unknown tracker-to-tracker association
Case 4 - unknown detection failures
Case 5 - unknown false alarms
Case 6 - varying number of targets.

Let Xt = (x1
t , x

2
t , · · · , xk

t ) denote the states of k trackers, Xk
t−1 is the previous

state of the kth tracker. Zt = (z1t , z2t , · · · , zm
t ) denotes m observations at time

t, which are related and dependent upon Xt. The hidden variables are given as
follows:

Vt data-to-tracker association matrix
Wt tracker-to-tracker association matrix
κt number of targets
τt number of detectable targets
ζt number of false alarms.

The first case is the simplex tracking model, in which correct data-to-tracker
association can be achieved. Specifically, the kth tracker Xk

t is associated with
measurement Zk

t correctly, and the current states of trackers can be associated
with previous states of the same trackers correctly. As for such cases, the mul-
tiple targets can be tracked with a high accuracy. While for other cases, if the
data-to-tracker association, tracker-to-tracker association, or detection failure is
unknown, then the tracking model becomes more complicated and correspond-
ingly the tracking error will be larger. In this work, we establish a more compli-
cated tracking model to investigate the case that the false alarms are unknown.

The system model is shown in Fig. 4. For the cases of unknown false alarms,
the number of false alarms is denoted as ζt, which is a Poisson random variable
with an average value of λ. The location of false alarms yields a uniform dis-
tribution with a density value of 1

O , where O is the volume of the observation
space. All the false alarms belong to a clutter tracker X0; hence, the dimension
of the association matrix V becomes mt × (K +1). Assuming the measurements
are reordered such that

zj | ∈ [mt − ζ(Vt) + 1,mt] (6)

where zj is a false alarm, then the clutter tracker model is given by

p(Zt|X0
t , Vt) =

mt∏

j=mt−ζ(Vt)+1

(
1
O

)Vj0 (7)

Given that p(ζ|λ)λζe−λ

ζ! , p(ζt) could be represented by

p(ζt) =
mt∏

m=1

[p(ζt|λ)]δ(ζt−m) (8)
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then

p(Vt|τt, ζt) =
mt−ζt∏

j=1

K∏

k=1

(πk
t )V jk

t (9)

and

p(Zt|Xt, Vt) =
mt−ζ(Vt)∏

j=1

K∏

k=1

p(zj
t |xk

t )V jk
t p(Zt|X0

t , Vt) (10)

where K − τt columns of the association matrix, V , are all-zero vectors.
The joint probability density function of X, Z, V , W , τ , ζ is given by

p(X1:t, Z1:t, V1:t,W1:t, τ1:t, ζ1:t) ≡ pX,Z,V,W,τ,ζ
1:t

= pX,Z,V,W,τ,ζ
1:t−1 p(Zt|Xt, Vt)p(Xt|Xt−1,Wt)p(Wt)

p(Vt||τt, ζt)p(τt)p(ζt) (11)

3.2 Multiple Target Tracking

The challenge of multi-target tracking is that some hidden variables exist in
the sequential estimation and prediction process such as the number of detected
targets, the number of trackers, the number of false alarms, and data-to-target
association. Let H represent all the hidden variables, then the general solution
can be obtained by using Expectation-Maximization (EM) optimization.

1. E-step: estimate the distribution of hidden variables from the predicted tar-
get state, x̂t, and measurements, z, by conditioning the joint distribution,
p(H, x, z), which is represented by

p(H|x̂, z) =
p(H), x̂, z

ΣHp(z|x̂,H)p(x̂|z,H)p(H)
(12)

2. M-step: estimate the distribution of the target state, x, from measurements,
z, by marginalizing hidden variables, H, that is

p(x|z) = Σ
H

p(x|z,H)p(H|x̂, z) (13)

4 Performance Analysis

To test the proposed system, the observation area is segmented into 64 blocks.
The detection probability is Pd = 0.825. In order to achieve the best compression
rate, a binary encoding scheme is developed. However, this encoding scheme can
only guarantee each block code is unique. If a target triggers two blocks simul-
taneously, then the obtained code will be the combination of the two codes that
represented these two blocks. Thereby the result will be a repetition of a single
code. Obviously, the encoding scheme itself brings in false alarms. Technically,
it is easy to remove the false alarms introduced by the scheme itself. Although
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Fig. 5. Measurement compression ratio of various space encoding schemes.
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Fig. 6. Compressive localization for two-target and three-target cases.

the price is to increase the number of sensors, the number of sensors added is
very small. Compared with decimal encoding, the number of sensors is still much
smaller. Therefore, we can still guarantee a high compression rate. As shown in
Fig. 5, for a 64-block area, the compression ratio of improved binary encoding is
8, which is close to the compression ratio of binary encoding 10.67 (ideal rate).
The compression ratio of decimal encoding is 1, since there is no any compression
in this encoding scheme.

Figure 6 shows the localization errors using various space encoding schemes
for two targets case and three targets case, respectively. Although binary
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Fig. 7. Multi-target tracking performance.

encoding scheme can achieve the best compression rate, it has highest localiza-
tion errors due to the ambiguities generated by the repetition of code patterns.
In contrast, the improved binary encoding scheme has much lower errors. For
the 64-block area, its localization error is just 2, which is much lower than that
of binary encoding scheme at 9 for two targets case. When the number of tar-
gets increases to 3, the localization errors for all the encoding schemes become
larger. It is reasonable since the data-target association becomes more difficult
and complicated.

With multiplex sensing and space encoding, it is able to implement effective
compressive multi-target tracking. Figure 7 shows the tracking performance of
multiple targets via binary compressive tracking. It can be seen that (1) the
binary compressive tracking errors are too large for real application, but the
improved binary compressive tracking is acceptable with the average tracking
errors at 4 and 6 for tracking three targets and four targets; (2) the increase
of number of targets degrades the tracking performance of both schemes; (3)
the improved binary compressive tracking scheme is more stable and scalable,
with the growing of number of targets, its tracking error increases slightly and
remains acceptable.

5 Conclusion

This work presents a new modality for wireless sensor based multi-target track-
ing tasks. The main feature of such a system is compressive tracking, which
is easily achieved by using fiber-optic sensors. More specifically, compressive
measurement is achieved by using multiplex sensing and space encoding tech-
nologies. Compressive tracking is implemented based on compressive localization
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and graphical model enabled tracking. The presented system is able to deal with
complex tracking tasks in terms of false alarms, unknown data-target associa-
tions. The results demonstrate a good performance in tracking a small number
of humans. The future work will be focusing on sampling geometry optimization
and varying targets investigation.
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