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Abstract. Sensor patter noise (SPN) has been proved to be an unique
fingerprint of a camera, and widely used for camera source identification.
Previous works mostly construct reference SPN by averaging the noise
residuals extracted from images like blue sky. However, this is unrealistic
in practice and the noise residual would be seriously affected by scene
detail, which would significantly influence the performance of camera
source identification. To address this problem, a complexity based sam-
ple selection method is proposed in this paper. The proposed method is
adopted before the extraction of noise residual to select image patches
with less scene detail to generate the reference SPN. An extensive com-
parative experiments show its effectiveness in eliminating the influence of
image content and improving the identification accuracy of the existing
methods.
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1 Introduction

With the continuous advancement of technology, it is very convenient to get
access to various image acquisition devices, and digital images make an impor-
tant role of lives. However, the emergence and prevalence of a variety of image
editing softwares makes it easier than ever before to temper and forge digital
images. In recent years, the tampering and forging events have risen a concern
about the authenticity and originality of digital images, which is called digital
image forensics. As an important branch of digital image forensic, camera source
identification focus on the originality of digital images, which can be divided into
two branches: (1) model-based, and (2) device-based camera source identifica-
tion. In this paper, we mainly discuss the latter.

In last decade, several methods were proposed to solve the problem of camera-
based source camera identification, such as sensor patter noise [1], sensor dust
characteristics [2], and defects in CCDs [3]. The key idea of these methods is
to extract unique characteristic features introduced by the hardware of image
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acquisition devices. Among them, SPN has been widely considered as a reliable
fingerprint because of its universality and stability.

Lukas et al. [1] first extracted SPN from digital images using a wavelet-
based Wiener de-noising filter. To reduce the false acceptance probability, Goljan
et al. [4] proposed the Peak to Correlation Energy ratio (PCE) instead of the
normalized correlation to estimate the correlation between the reference and test
SPN. Considering computational cost, Hu et al. [5] proposed a new method only
taking the large components of SPN into account. Recently, Li et al. [6] proposed
an effective feature extractor based on the Principal Component Analysis (PCA)
de-noising algorithm [7] to reduce the size of camera fingerprint and significantly
improve the performance of several existing methods.

However, the reference SPN extracted through the methods above will be
unavoidably affected by scene details, which would significantly influence the
accuracy of source camera identification. To solve this problem, Wu et al. [8]
introduced an edge adaptive SPN predictor to reduce the influence of images
content residual based on content adaptive interpolation, and also proved that
the reference SPN with less scene noise could achieve a higher identification
accuracy. Recently, Li et al. [9] proposed a framework based on random subspace
method (RSM) and majority voting (MV) to suppress the interference of image
content.

Different from the methods discussed above, we propose a complexity based
sample selection method to obtain more accurate reference SPN. Firstly, we
adopted image complexity as the representation of amount of scene details. Then,
the sample selection method is used before the extraction of noise residual to
select image pathes with less scene detail to generate reference SPN. After the
construction of reference SPN, different methods are performed to verify the
effectiveness of the proposed method.

The rest of this paper is organized as follows. Section 2 firstly introduce the
measurement of image complexity, and then propose the sample selection method
based on image complexity. In Sect. 3, experimental results show the effectiveness
and applicability of the proposed method, and finally, conclusion is drawn in
Sect. 4.

2 Proposed Method

Previous works suggested that SPN should be extracted in several pure images,
such as a dark or white one [8]. They insisted that the noise residual extracted
from those images with less scene detail is much more pure and reliable. As
shown in Fig. 1, the image scene detail obviously differs in different area of an
image. In most cases, there are always some regions containing less image con-
tent, which means lower image complexity, and the SPN generated from these
regions is much more reliable. Inspired by this, a new complexity based sam-
ple selection method is proposed in this section, by quantitatively analyzing the
image complexity.
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Fig. 1. (a) An image taken by Canon Ixus70. (b) Reference SPN of Canon Ixus70. (c)
The noise residual extracted from (a).

2.1 Image Complexity Measurement

There are many kinds of image complexity measurements, in which texture fea-
tures are widely used and quite effective. Textures are characterized by the rela-
tionship of the intensities of neighboring pixels ignoring their color, which means
they are a representative pattern of spatial distribution of image intensities. They
contain fatal information about the structural arrangement of surfaces and their
relationship to the surrounding environment. Since the textural properties of
images appear to carry useful information of image content, it is reasonable to
consider texture features as the representation of image complexity.

In various methods of texture analysis, the gray level co-occurrence matrix
(GLCM) proposed by Haralick and Shanmugam [10] is considered as the most
widely used algorithm because of its adaptability and robustness in different
scenes. In our paper, the GLCM is adopted to analyze the texture features of
the image, considering as the complexity of the image patches.

The co-occurrence matrix is defined over an image according to the distribu-
tion of co-occurring values for a given offset. More specifically, GLCM calculates
how often a specified pixel with gray-level value occurs either horizontally, ver-
tically, or diagonally to the adjacent pixels. Mathematically, the co-occurrence
matrix C, defined over an m×n image I and parameterized by an offset (Δx,Δy),
is calcultated as:

CΔx,Δy (p, q) =
m∑

i=1

n∑

j=1

{
1, if I (i, j) = p and I (i + Δx, j + Δy) = q
0, otherwise (1)

where p and q are pixel values of the image, and i, j is the spatial posi-
tions in the given image I. What’s more, the offset (Δx,Δy) depends on the
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direction adopted and the distance at which the matrix is computed. Haral-
ick et al. extracted 14 parameters form GLCM to describe the textural prop-
erties of a given image, but some of them show redundancies, and the com-
monly used parameters are energy, contrast, entropy, homogeneity and correla-
tion coefficients.

As discussed above, the texture features of the whole image can be expressly
represented by the combination of those GLCM parameters. However in this
paper, our goal is to simply measure the complexity of image patches and find
the patch of smallest complexity to extract more pure SPN, rather than precisely
describe the sharpness and depth of the texture. So we just select correlation
coefficient as the representation of image complexity. The definition of correlation
in GLCM is given by:

cov =
∑

i,j

(i − μi) (j − μj) G (i, j)
σiσj

(2)

where μi, μj is the mean of the GLCM elements along the horizontal and vertical
direction respectively, and σi, σj is the variance matrix of ith row and jth column.

Correlation coefficient measures the consistency of image textures. Usually,
the patch with less scene detail will has a high correlation coefficient. In other
words, the higher the correlation coefficient, the lower image complexity. As
shown in Fig. 2, it is obvious that the upper left patch of the image, whose
correlation coefficient is highest, has less scene detail.

(a) (b)

14.9606 11.7036 8.6227 9.4348

2.1603 0.1516 4.3974 0.4487

0.1999 0.1249 0.1335 0.2457

0.0858 0.0821 0.0443 0.0951

Fig. 2. (a) An image taken by Canon Ixus70. (b) The image complexity of each patch.

2.2 Image Complexity Based Sample Selection

Lukas et al. [1] firstly proposed to extract the reference SPN from digital image
by averaging noise residuals. They adopted a wavelet-based Wiener de-noising
filter to extract the residual signals from the wavelet high frequency coefficients:

ri = Ii − F (Ii) (3)
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where Ii is the original image and F is the de-noising filter. Then the reference
SPN is given by:

R =

N∑
i=1

ri

N
(4)

where N is the number of images to generate reference SPN. But the averaging
method has an limitation, the image to generate reference SPN are mostly blue
sky, which is not realistic in practice.

To address this problem, image patch selection is adopted before the extrac-
tion of noise residual. Assuming there are n images denoted by Ii (i =
1, 2, 3, ..., n) taken by the same camera. Firstly, every image is segmented into
several non-overlapping blocks with the size of 256× 256 pixels. Then, the com-
plexity coefficient cov is calculated using Eq. 2 of each image block to form a
complexity matrix, as shown in Fig. 2. For all images in the experiment database,
complexity coefficients of the same location are then added together to form a
new complexity matrix N . For the purpose of using the region with less scene
detail to generate the reference SPN, the block with maximum value in N is
selected to extract noise residual for construction of reliable reference SPN using
method in [1]. The block diagram of complexity-based SPN generation is shown
in Fig. 3.

RSM

...

Camera N

Camera 1

Sample Selection

Basic SPN

PCA+RSM

PCA

Reference SPN

Complexity matrix

Fig. 3. The block diagram of complexity based sample selection.

3 Experimens and Results

3.1 Experimenal Setting

In order to evaluate the performance of the proposed method, we carry out our
experiments on the Dresden mage Database [11]. A total of 1200 images from
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10 cameras are considered in the experiments, which are all taken indoors and
outdoors with variety of natural scene sight. The 10 cameras devices belong to
four camera models, and each model has 2–3 different devices. Table 1 lists the
details of the 10 cameras used in the experiments.

Table 1. Camera used in the experiments.

Cameras Size Abbr.

Canon Ixus70 0 3072× 2304 C1

Canon Ixus70 0 3072× 2304 C1

Canon Ixus70 1 3072× 2304 C2

Canon Ixus70 2 3072× 2304 C3

Nikon CoolPixS710 0 4352× 3264 N1

Nikon CoolPixS710 1 4352× 3264 N2

Samsung L74wide 0 3072× 2304 S1

Samsung L74wide 1 3072× 2304 S2

Samsung L74wide 2 3072× 2304 S3

Olympus mju 1050SW 0 3648× 2734 O1

Olympus mju 1050SW 1 3648× 2734 O2

For each camera, 120 images are divided into two subsets for training and
testing, of which 50 images are used to construct the reference SPN, and the
test set is consisted of the remaining 70 images. For a fair comparison, the
basic SPN [1], PCA [6]and RSM [9] method mentioned above are respectively
performed with and without the proposed sample selection method. Considering
the computational cost, the experiments without sample selection are performed
on the central block with the size of 256× 256 cropped from the original image.

3.2 Performance Evaluation

As described in Sect. 2, the image complexity based sample selection method is
performed before the extraction of SPN. We first cut the images into the size of
2048×2048 from the upper left corner of the original images. Then, the cropped
images are segmented into 64 patches with size of 256 × 256. For all images in
the experiment database, correlation coefficients of the same locations are then
added together to form the complexity matrix of whole database, which is shown
in Table 2.

As we can see from Table 2, the patch of 1st row and 2nd column has the
largest correlation coefficient, which also means minimum image complexity and
less scene detail. So, we select this patch as the representation of images to
extract SPN. In order to verify the effective of the proposed method, we carried
out several comparative experiments with and without sample selection, and the
experimental results are shown in tables below.
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Table 2. Correlation coefficients of image database.

Corrlation coefficient(×104)

1.3610 1.5925 1.4586 1.2352 1.4163 1.2155 1.5770 1.3235

1.4200 1.2593 0.9244 1.2302 0.9442 1.2868 1.5716 1.3474

1.0984 0.8087 0.7612 1.0199 1.2054 1.0570 1.2178 1.1123

1.1353 0.6064 0.5761 0.6027 0.8489 0.7015 0.5064 0.7193

0.5969 0.4425 0.3381 0.6384 0.4943 0.3305 0.2352 0.7417

0.4119 0.4034 0.4896 0.4890 0.2098 0.1629 0.2229 0.2415

0.4419 0.5472 0.7511 0.5914 0.3907 0.3329 0.3395 0.3156

0.6491 0.5252 0.7422 0.6516 0.7076 0.5305 0.4543 0.4978

The basic SPN method of image source identification is to directly extract
noise residual from several images to form reference SPN by averaging. Then,
the correlation coefficient between the reference and test noise residual is cal-
culated. The test image is belong to the origin whose correlation coefficient is
highest. The experimental results are shown in Tables 3 and 4. When adopted
the proposed sample selection method, the average identification accuracy of
basic SPN method has an improvement of 0.42% from 87.29% to 87.71%. The
average identification accuracy of three other methods are also listed in Table 3.

Table 3. Average identification accuracy with and without sample selection.

Method Basic SPN PCA RSM SPN PCA RSM SPN

Without SS 87.29 86.87 87.01 87.41

With SS 87.71 87.62 87.85 87.96

Table 4. Identification accuracy of basic SPN with and without sample selection (%).

Method C1 C2 C3 N1 N2 S1 S2 S3 O1 O2 Ave.

Basic SPN 98.57 98.57 100 65.71 92.86 91.43 77.14 88.57 77.14 82.86 87.29

SS SPN 95.71 94.29 98.57 81.43 88.57 84.29 88.57 85.71 77.14 72.86 87.71

PCA is a widely used method to reduce the dimension of camera finger-
print while represent the original data as well as possible. When selecting an
appropriate proportion of principal components, there should be a certain extent
improvement of identification accuracy. The results of the experiment are shown
in Table 5. It is easy to find that the identification accuracy of SS PCA has
an obvious improvement compared with the PCA without sample selection,
especially when the proportion of principal components G(T) is smaller. When
G(T) = 0.99, the SS PCA shows its highest accuracy of 88.14%, and the average
improvement of identification accuracy is 0.78%. Table 5 also lists the identifica-
tion accuracy of each device respectively when G(T) = 0.99.
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Table 5. Identification accuracy of PCA SPN with and without sample selection (%).

G(T) 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.0 Ave.

PCA 85.86 85.86 86.43 86.29 87.00 87.14 87.43 87.86 88.00 87.43 86.84

SS PCA 87.29 87.29 87.57 87.57 87.43 87.29 87.71 88.14 88.14 88.14 87.62

Method C1 C2 C3 N1 N2 S1 S2 S3 O1 O2 Ave.

PCA 98.57 98.57 100 67.14 94.29 92.86 77.14 90.00 77.14 84.29 88.00

SS PCA 97.14 84.29 98.57 80.00 88.57 84.29 88.57 97.14 77.14 75.14 88.14

In work [9], random subspace method and majority voting is used to improve
the identification accuracy. There are two parameters which would affect the
identification performance: the dimension of each random subspaces M and the
number of random subspaces L. According to [9], we empirically set L = 600
while M/d various from 0.1 to 1, where d is the size of entire feature space. It
is worth mentioning that the performance of RSM method is the same as that
of basic SPN method when M/d = 1, which has been proved by the results
shown in Table 6. The highest identification accuracy of RSM method and SS
RSM method is 87.29% and 88.14% respectively, and the average improvement
is 0.84%. Similar with Table 5, the improvement is more obvious when M/d
is smaller. Also, Table 6 shows the identification accuracy of each device with
highest average identification accuracy when M/d = 0.6 (for RSM) and 0.3 (for
SS RSM).

Table 6. Identification accuracy of RSM SPN with and without sample selection (%).

M/d 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Ave.

RSM 87.00 85.93 86.64 87.21 87.36 87.29 87.14 87.00 87.29 87.29 87.01

SS RSM 87.93 88.07 88.14 87.64 87.79 88.07 87.64 87.79 87.71 87.71 87.85

Method C1 C2 C3 N1 N2 S1 S2 S3 O1 O2 Ave.

RSM 98.57 98.57 100 65.00 92.14 91.43 78.57 89.29 76.43 82.86 87.29

SS RSM 96.43 95.00 98.57 80.71 88.57 83.57 90.00 95.71 77.14 75.71 88.14

Then another experiment combining sample selection, PCA and RSM with
L = 600 and G(T) = 0.99 is performed to see whether the identification accuracy
would be further improved. Table 7 shows the experimental results. The highest

Table 7. Identification accuracy of PCA RSM with and without sample selection (%).

M/d 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Ave.

PCA RSM 86.00 87.00 87.07 87.50 87.71 87.79 87.64 87.64 87.79 87.68 87.38

SS PCA RSM 88.00 88.00 87.57 87.79 88.07 88.07 87.71 88.14 88.07 88.10 87.95

Method C1 C2 C3 N1 N2 S1 S2 S3 O1 O2 Ave.

PCA RSM 98.57 98.57 100 65.00 93.57 92.14 78.57 90.71 76.43 84.29 87.79

SS PCA PSM 97.14 94.29 98.57 80.00 88.57 84.29 88.57 97.14 77.14 75.71 88.14
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accuracy of SS PCA RSM method is 88.14%, whose average accuracy improve-
ment is 0.57%. Table 7 also shows the identification accuracy of each device with
highest average identification accuracy when M/d = 0.6 (for PCA RSM) and
0.8 (for SS PCA RSM).

4 Conclusion

An effective complexity based sample selection method for camera source identi-
fication is proposed in this paper. Considering the noise residual extracted from
natural images may be seriously affected by scene details, we adopt a sample
selection method based on image complexity to select image patches with less
image content to generate reference SPN, which could significantly enhance the
credibility of reference SPN. An extensive comparative experiments are carried
out to prove the effectiveness of the proposed method. And the experimental
results show that the proposed method can eliminate the influence of image
content and improve the identification accuracy of the existing methods.
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