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Abstract. Wireless localization has become a key technology location based
services, and the non-line-of-sight (NLOS) propagation is one of the most
important error source in the localization. Therefore, this paper defines a novel
algorithm residual error (ARE) in NOLS environment, and estimates the posi-
tion of mobile station (MS) by minimizing this ARE, where the quadratic
programming is employed to solve the minimization problem. The simulation
results show that the proposed algorithm produces significant performance
improvements in NLOS environments.
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1 Introduction

The wireless localization technology is one of the key techniques in the future internet
of things, and therefore has attracted widely attentions. For example, in early 1990’s,
the FCC announced emergency call standard which requires a localization accuracy
within 125 m [1]. So far, the localization parameters usually utilized the time-of-arrival
(TOA/TDOA), angle-of-arrival (AOA) and received-signal-strength (RSS) or other
information [2–5], and the positioning algorithms might include CHAN algorithm,
Taylor series method, FANG algorithm, Friedlander algorithm, spherical interpolation
algorithm (SI) and SX algorithm [6–10]. However, in non-line of sight (NLOS)
environments, these previous algorithms could not achieve good performance, since the
NLOS error in a real-world cellular network may approach 500–700 m. Meanwhile,
the NLOS error cannot be statistically modeled. Therefore, the NLOS error suppression
had become one of the key issues to the practical localization applications.

There are three kinds of NLOS mitigation methods. The first attempted to accu-
rately model the NLOS environment, followed a position estimator exploiting this
model [11, 12]. However, it is difficult in practice to obtain an accurate model to
describe the complicated NLOS propagating environments. Thus, this kind of method
was difficult to be widely used. The second kind of algorithm identified the NLOS base
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stations (BS), and then employed only the LOS BSs to estimate the MS position
[13, 14]. Such algorithms required a certain number of LOS BSs, but the NLOS BS
identification performance could not be controlled, resulting in the positioning per-
formance degradation sometimes. The third class of algorithm tried to weight the
ranging measurements or intermediate estimations, and the weights were usually
derived from the geometric and algebraic relationship between the BSs and the MSs
[15–17]. The advantage of this kind of algorithm was that the MS could always be
positioned, while its disadvantage was the limited estimation accuracy.

In order to tackle the above issues, this paper defines a novel residual error, i.e., the
ARE, and then an optimization model is constructed. In detail, the optimization objective
function is defined as the residual error of two conventional algorithms, and the constraints
come from the relationships between measurements and corresponding true distances.
Finally, a quadratic programming is employed to solve the optimization problem and
achieve the position estimation. Computer simulations show that the proposed algorithm is
superior to conventional localization algorithms in NLOS environments.

2 Range Based and Range-Inverse Based Localizations

Let ðxi; yiÞ and ðx; yÞ denote the coordinate of the i-th BS and MS, we have the BS-MS
distance as

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2 þðy� yiÞ2

q
ð1Þ

After some mathematical transformations, we rewrite (1) as

r2i � Ki ¼ �2xix� 2yiyþR ð2Þ

where Ki ¼ x2i þ y2i and R ¼ x2 þ y2. Equation (2) can be written in the matrix form, i.e.

P ¼ AX ð3Þ

where P ¼
r21 � K1

r22 � K2

..

.

r2N � KN

2
6664

3
7775; A ¼

2x1; 2y1; �1
2x2; 2y2; �1

..

.

2xN ; 2yN ; �1

2
6664

3
7775; X ¼

x
y
R

2
4

3
5.

It is easy to derive the least squares (LS) solution from (3)

X̂ ¼ ðATAÞ�1ATP ð4Þ

Next, we define the reciprocal of ri, i.e.

Ri ¼ 1
ri
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� xiÞ2 þðy� yiÞ2
q ð5Þ
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Squaring both sides of (5), we have

R2
i ¼

1
Ki � 2xix� 2yiyþR

ð6Þ

After some maths operations, we have

R2
i Ki � 1 ¼ ð2xix� 2yiy� RÞR2

i ð7Þ

Similarly, we can turn (7) into a matrix form, namely

Y ¼ CX ð8Þ

where Y ¼
R2
1K1 � 1

R2
2K2 � 1

..

.

R2
NKN � 1

2
6664

3
7775; C ¼

2x1R2
1; 2y1R2

1; �R2
1

2x2R2
1; 2y2R2

1; �R2
1

..

.

2xNR2
1; 2yNR2

1; �R2
1

2
6664

3
7775; X ¼

x
y
R

2
4

3
5:

Thus, the LS solution can be found as

X
_ ¼ ðCTCÞ�1CTY ð9Þ

3 The ARE Based Localization Algorithm

As said in Sect. 1, this section will detailed introduce the ARE based localization by
utilizing the quadratic programming model, where the objective function, the con-
straints and the final optimization problem are investigated next.
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Fig. 1. Positioning results for different algorithms
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3.1 The Object Function

In the NLOS environment, the above two position estimates will be different, which
indicates that the residual error of different positioning algorithms is reasonable.
Figure 1 shows that when the BS number is five, the above two position estimates, i.e.,

X̂1 ¼ X̂ and X̂2 ¼ X
_

, will deviate from each other significantly. Accordingly, we can
define an object function based on the ARE as

FðvÞ ¼ normðPðX̂1 � X̂2ÞÞ2 ð10Þ

where normð�Þ represent the l2-norm and P ¼ 1 0 0
0 1 0

� �
. Moreover, the relation

between the range inverse and its true value can be written as

R0
i ¼

1
ai
Ri ð11Þ

where ai represents the scaling factor. Then, formula (7) can be rewritten as

R2
i Ki � a2i ¼ ð2xix� 2yiy� RÞR2

i ð12Þ

From (12), we have the LS solution as

X̂2 ¼ ðCTCÞ�1CTðC� vÞ ð13Þ

where B ¼ ½R2
1K1;R2

2K2; � � � ;R2
NKN �T , v ¼ ½a21; a22; � � � ; a2N �T . Similarly, the range based

position estimation can be rewritten as

X̂1 ¼ ðATAÞ�1ATY ¼ ðATAÞ�1ATðTv� Y0Þ ð14Þ

where T ¼ diagfr21 ; r22 ; � � � ; r2Ng;Y
0 ¼ ½K1;K2; � � � ;KN �T . Finally, the objective func-

tion (10) can be rewritten as

FðvÞ ¼ normðPððATAÞ�1ATðTv� Y0Þ � ðCTCÞ�1CTðB� vÞÞÞ ð15Þ

Next, we can turn the location estimation into an optimization problem, i.e.,

minimize F vð Þ ð16Þ

3.2 The Constraints

The constraint is the rule that object parameters need to follow, and the optimization
algorithms is to meet these constraints and find an expected value of the objective
function to achieve the optimal solution. The proposed algorithm present in this paper
has two main constraints, the first one derived from [15].
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At first we should ensure the lower bound of vector v

Vmin ¼ ½a21;min; a
2
2;min; � � � ; a2N;min� ð17Þ

where ai;min ¼ max Li;j�dj
di

��� j 6¼ i; j 2 1;N½ �; i 2 1;N½ �
n o

. Note Li;j; i 6¼ j refers the dis-

tance between the i-th BS and j-th BS, and maxf�g denotes the maximum element of a
vector (or set). Finally the first constraint can be expressed as Vmin � v�Vmax with
Vmax ¼ 1; 1; � � � ; 1½ �T .

The second constraint comes from a fact that in the NLOS environment, the dis-
tance between MS and BS must be smaller than the measured distance. Hence, the MS
must lie in the public areas, namely the feasible region. This constraint can be written
as

R
�
� Dmeas ð18Þ

where R
�
¼

normðX� BS1Þ
normðX� BS2Þ

..

.

normðX� BSNÞ

2
6664

3
7775; Dmeas ¼

r21
r22
..
.

r2N

2
6664

3
7775.

3.3 The Optimization Problem

According to Sects. 3.1 and 3.2, we can put the NLOS weight search into an opti-
mization problem as follows

min FðvÞ
subject to

Vmin � v�Vmax

R
�
�Dmeas

� ð19Þ

Equation (19) can be solved by quadratic programming [18], and by substituting
obtained vector into (10), we can obtain the optimal MS position estimate.

4 Simulation and Analysis

This paper exploits the classical BS topology as ð0; 0Þ, ð ffiffiffi
3

p
r; 0Þ, ð

ffiffi
3

p
r

2 ; 32 rÞ, ð�
ffiffi
3

p
r

2 ; 32 rÞ
and ð� ffiffiffi

3
p

r; 0Þ, where r denotes the radius of a cellular cell, 1000 m in our study. In
simulations, the measured noise will be modeled as a zero-mean Gaussian noise with
its standard deviation of 10 m if unspecified. By contrast, the NLOS error cannot be
accurately modeled, thus it is assumed as a uniformly distributed random variable
ranging from 0 to MAX [19]. In addition, there are four algorithms compared in
simulations, including the proposed algorithm, the CLS algorithm [20], the LLOP
algorithm [21] and the TS-WLS algorithm [19].
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4.1 Effects of NLOS Error

Figure 2 shows the NLOS error effect on the accuracy of tested algorithms, in which
the MS is located in [400, 400]. From Fig. 2, we clearly see that all algorithms will
produce higher RMSE with rising NLOS errors. Although the proposed algorithm
differs from the CLS algorithm trivially for MAX less than 300 m, the performance
advantage of the proposed method is obviously for a larger NLOS error scenario, i.e.,
MAX > 300 m.
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Fig. 2. NLOS error effect
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4.2 Effects of the BS Number

Figure 3 shows the effects of BS number under the typical seven-BS topology, where
the maximum value of NLOS error is 400 m and the MS randomly distributed within
the cellular cell. From it, we explicitly find that the increase of BS number has
improved the accuracy of all algorithms. It is also easy to see that for the proposed
algorithm and CLS algorithm, they produce similar performance so long as the BS
number is less than five, while the proposed algorithm significantly outperforms the
CLS method with a higher BS number. From Figs. 2 and 3, the performance order of
above algorithms must be, the proposed algorithm > CLS > LLOP > TS-WLS.

4.3 Effects of the LOS-BS Number

Figure 4 shows the effects of different LOS-BS numbers. As can be seen from this
figure, the increasing LOS-BS number will increase the accuracy of the proposed
algorithm. For instance, when the LOS-BS number is 1, the probability of accuracy of
120 m is 85%, but when the number reaches 2, the probability is 92%.
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Fig. 4. Effect of LOS-BS number
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In summary, the proposed algorithm is superior to the traditional location algorithm
on accuracy, and the increase of the BS number will make accuracy of the proposed
algorithm increase significantly. Simultaneously, since the LOS-BS will narrow the
scope of feasible region, it also improves the accuracy of the proposed algorithm.

5 Conclusions

The NLOS error is a key and difficult point in wireless localization. Therefore it is
important to study the localization under the NLOS corrupts. In this paper, we propose
a new concept of residual error based on the positioning difference of different local-
ization algorithms, and then we employ the optimization theory to reach a NLOS
suppression localization, in which the estimation model is transferred into an optimum
weights search. The quadratic programming is exploited to solve it and significantly
improves the performance. Simulations prove that the proposed method is superior to
some conventional algorithms.
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