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Abstract. Complementary codes (CCs) are a kind of two-dimensional
spreading codes with ideal correlation properties to resolve the
interference-limited problem of traditional CDMA systems. This paper
proves the ideal correlation properties of CCs with non-integral chip
delay under the definition of aperiodic correlation functions. The com-
parisons of CCs with traditional spreading codes on auto- and cross-
correlation properties under different definitions of correlation functions
will also present to verify the correctness of the proof work and to show
that a CC-CDMA system is able to achieve MPI- and MAI-free commu-
nication owning to the proved ideal aperiodic correlation properties.
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1 Introduction

Owning to better anti-interference ability, higher frequency efficiency, higher
security and lower radiation, Code Division Multiple Access (CDMA) with
spread spectrum technique has been widely applied in wireless communication
systems in the last 50 years, since its origins in the military field and naviga-
tion systems. Till now, CDMA is still the preferred multiple access technique
in satellite communications, although it has lost competitiveness compared with
Frequency Division Multiple Access (FDMA) in cellular systems [1,2].

Now, we are interested in exploring reasons for the decline and walk-off of
CDMA from a technical perspective. It is well known that all existing CDMA-
based 2-3G standards are interference-limited, particularly in the presence of
multiple access interference (MAI) and multi-path interference (MPI). It has
to be admitted that the immediate cause is the unsatisfactory properties of
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the spreading sequences, while the primary cause is the uncoupled design of
spreading codes with the systems and environment of communication.

The study on spreading codes for CDMA applications is a traditional research
topic and many candidate codes have been found in the literature, however, they
were generated and applied to the systems only based on the knowledge of seemly
acceptable properties in their periodic auto- and cross-correlation functions. Due
to the poor properties of spreading codes, a great deal of auxiliary sub-systems
or techniques should be added to CDMA systems, such as the power control
and multiuser detection, to mitigate the problems associated with the spreading
codes, such as near-far effect, MAI and MPI, etc.

In order to bring CDMA back on track and to speed up the evolution of
CDMA technologies, a possible solution has been proposed with the help of
a new spreading technique based on complementary codes (CCs)[3]. Different
from all traditional spreading sequences, the orthogonality of CCs is established
based on a “flock” of element sequences jointly. As a result, ideal auto- and cross-
correlation properties are realizable at the same time, while it never happens for
any traditional spread sequences as proved by the Welch bound [4] and Sarwate
bound [5].

In the work [6], we have present a survey on the history of CCs. However,
a deeply studies on the correlation properties of CCs, especially with realistic
communication environment has not been presented. Taking complete CCs [3]
as a classic example, this paper proves the ideal correlation properties of CCs
with non-integral chip delay under the definition of aperiodic correlation func-
tions. Comparisons of CCs and traditional spreading codes on auto- and cross
correlation properties are also presented in this paper to verify correctness of
the proof work. Finally, an analysis on the detecting process of a complementary
coded CDMA (CC-CDMA) system is presented with the design constraints of
CC-CDMA systems concluded at the end of this paper.

2 Definitions and Code Construction

2.1 Definitions of CCs

Different from all traditional spreading sequences, the orthogonality of CCs is
established based on a “flock” of element sequences jointly. A family of CCs,
denoting as C(K,M,N), contents K CCs each with M element sequences. Due
to its two-dimensional feature, let C(k) = {c(k)m }M

m=1 be a CC with M element
sequences c(k)m = [c(k)m,1, c

(k)
m,2, · · · , c

(k)
m,N ]. M is called flock size (which determines

the number of element sequences used by the same user), and N is the code
length. In this way, MN is the “congregated length” of a CC, and it determines
the processing gain of the corresponding CC-CDMA system. For the CDMA
application, K CCs are needed as signature codes for K users.
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2.2 Construction of Complete Complementary Codes

Complete Complementary Codes (CCCs) [3] is one of the most popular CCs and
this section gives the construction method of CCCs to facilitate the following
proof and simulation work.

Let A = [ai,j ], B = [bi,j ], D = [di,j ] be three N ×N orthogonal matrices with
|ai,j | = |bi,j | = |di,j | = 1, where i, j ∈ {1, 2, · · · , N}. ai = [ai,1, ai,2, · · · , ai,N ]
denotes i-th row of A.
Step 1. Construct N sequences with length N2, as

E(k) = [bk,1a1, bk,2a2, · · · , bk,NaN , ] = [e(k)1 , e
(k)
2 , · · · , e

(k)
N2 ], k = 1, 2, · · · , N

(1)

Step 2. Construct m-th element sequence of k-th CCs in a family of CCCs using
the above N sequences with matrix D, as

c(k)m =
[
dm,1e

(k)
1 , dm,2e

(k)
2 , · · · , dm,Ne

(k)
N , dm,1e

(k)
N+1, dm,2e

(k)
N+2, · · · , dm,Ne

(k)
2N ,

· · · dm,1e
(k)
N2−N+1, dm,2e

(k)
N2−N+2, · · · , dm,Ne

(k)
N2 ]

= [c(k)m,1, c
(k)
m,2, · · · , c

(k)
m,N2

]
, k,m = 1, 2, · · · , N (2)

The above construction method of a family CCCs C(N,N,N2) can be visually
described in Fig. 1.

Fig. 1. The construction method of complete complementary codes.

3 Proof of Ideal Correlation Properties

3.1 Definitions of Complementary Correlation

Correlation properties of spreading codes are the key feature to effect the system
performance of CDMA systems. Correlation function is usually used to describe
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Fig. 2. Even periodic, odd periodic and aperiodic correlation functions and their rela-
tionships.

the correlation properties and three familiar definitions of correlation functions,
even periodic, odd periodic and aperiodic correlation functions and their rela-
tionships, are visually described in Fig. 2.

When a and b is the same sequence, it is called auto-correlation function
which is desired to be a delta function for a CDMA system to eliminate MPI,
otherwise, it is called cross-correlation function which is desired to be a zero
function for a CDMA system to eliminate MAI.

As can be seen from Fig. 2, the even periodic correlation function only
describes the correlation properties when the adjacent bits have the same phase,
while the odd periodic correlation function only describes the correlation proper-
ties when the adjacent bits have the positive phase. In fact, the phase of adjacent
bits is random. Therefore, neither of them two is able to guarantee a MPI-free or
MAI-free CDMA system, even though auto-correlation is a delta function and
cross-correlation function is a zero function under the definitions of even or odd
correlation functions. However, it can be easily proved that ideal aperiodic cor-
relation properties are sufficient and necessary condition for both ideal even and
odd correlation properties. Although it is more difficult to achieve ideal aperi-
odic correlation properties, but it is able to guarantee both MAI- and MPI-free
in a CDMA system with any combination of adjacent bits.

Therefore, in this paper, the correlation properties of CCs are characterized
by the complementary aperiodic correlation function which is calculated as the
sum of the aperiodic correlation functions of all element sequences with the same
delay δ, or

ρ(C(k1),C(k2); δ) =
M∑

m=1

φ(c(k1)
m , c(k2)

m ; δ) =

{
MN, δ = 0, k1 = k2

0, elsewhere
(3)

where C(k1),C(k2) ∈ C(K,M,N), k1, k2 ∈ {1, 2, · · · ,K}, and φ
(
c(k1)

m , c(k2)
m ; δ

)
is

the aperiodic correlation function of c(k1)
m and c(k2)

m . The ideal aperiodic corre-
lation properties are described behind the second equal sign in (3).
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3.2 Ideal Aperiodic Correlation Properties

The ideal aperiodic correlation properties of CCCs, as defined and constructed
in the above sections, will be proved as followed.

As the construction method of CCCs, n-th chip of m-th element sequence of
k-th CC can be expressed as

c(k)m,n = ax,ybk,xdm,y, k,m ∈ {1, 2, · · · , N}, n ∈ {1, 2, · · · , N2} (4)

where, x = � n
N �,y =< n >N +Nδ(< n >N ). The operator < · >x means to

calculate x-mod,�x� denotes the ceil of x and δ(t) denotes a delta function.
According to (3), when δ ≥ 0, the complementary aperiodic correlation func-

tion of any two CCs in a family CCCs can be expressed as:

ρ(C(k),C(g); δ) =
M∑

m=1

N2−δ∑

n=1

c(k)m,nc
(g)
m,n+δ =

M∑

m=1

N2−δ∑

n=1

ax,ybk,xdm,yax′,y′bk,x′dm,y′

(5)

where k, g ∈ {1, 2, · · · , N}, x′ = �n+δ
N �y′ =< n + δ >N +Nδ(< n + δ >N ).

It is easy to prove that when i �= i′,
∑N

j=1 ai,jai′,j =
∑N

j=1 bi,jbi′,j =
∑N

j=1 di,jdi′,j = 0.
Now we prove the ideal aperiodic correlation properties of CCCs in three

cases:
(1) when δ �= qN and δ �= 0, q ∈ Z+, y �= y′, we get

ρ(C(k),C(g); δ) =
N2−δ∑

n=1

ax,yax′,y′bk,xbg,x′

M∑

m=1

dm,ydm,y′ = 0 (6)

(2) when δ = qN , y = y′ and x′ = x + q, we get

ρ(C(k),C(g); δ) =
N2−δ∑

n=1

ax,yax′,ybk,xbg,x′

M∑

m=1

dm,ydm,y

= N

N−q∑

x=1

N∑

y=1

ax,yax+q,ybk,xbg,x′

= N

N−q∑

x=1

bk,xbg,x+q

N∑

y=1

ax,yax+q,y

= 0 (7)

(3) when δ = 0, y = y′ and x′ = x, we get

ρ(C(k),C(g); δ) =
N2
∑

n=1

ax,yax,ybk,xbg,x

M∑

m=1

dm,ydm,y

= N

N∑

x=1

bk,xbg,x

N∑

y=1

ax,yax,y
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= N2
N∑

x=1

bk,xbg,x

=

{
N3 k = g

0 k �= g
(8)

When δ < 0, it is easy to prove that above conclusion is tenable. In conclu-
sion, the CCCs constructed in Sect. 2.2 satisfies the ideal aperiodic correlation
properties, as

ρ(C(k),C(g); δ) =

{
N3 k = g, δ = 0
0 elsewhere

(9)

3.3 Ideal Correlation Properties with Non-integral Chip Delay

In practical CDMA systems, there exists non-integral chip delay between signals
from multiple users or multiple paths. In this section, we will prove that the
ideal aperiodic correlation properties of CCs still guarantee the interference-free
communication even with non-integer chip-shift, taking the situation in Fig. 3 as
an example.

Fig. 3. The process of correlation with non-integral chip delay.

As shown in Fig. 3 the signal sa(t) and sb(t) are spread by the sequences
a = [a1, a2, a3, a4] and b = [b1, b2, b3, b4] respectively. There exists chip delay
τ between sa(t) and sb(t) due to multiple path transmission or asynchronous
multi-user communication. When τ �= qTc, q ∈ Z+, Tc is the chip interval, we
get ∫ 4Tc

0

sa(t)sb(t)dt = (Tc − τ)(a1b2 + a2b3 + a3b4 + a4b1)

+ τ(a1b3 + a2b4 + a3b1 + a4b2)
= (Tc − τ)φEP (a,b; 1) + τφEP (a,b; 2)
= (Tc − τ)[φ(a,b; 1) + φ(b,a; 3)] + τ [φ(a,b; 2) + φ(b,a; 2)] (10)

As shown in Fig. 3 and (10), correlation function with any non-integral chip
delay equals to two correlation functions with integral chip delay. Therefore, the
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correlation properties of CCs with non-integral chip delay is still ideal owning
to its ideal correlation properties with any integral chip delay.

4 Comparison on Correlation Properties
with of Traditional Spreading Codes

In this section, taking a family of CCCs C(4, 4, 16) as an example, the simulated
correlation properties of CCs are shown to verify correctness of the proof work.
The congregated length of C(4, 4, 16) is 64, therefore, the correlation properties of
Gold sequences with length 63 and Walsh codes with length 64 are also simulated.

Fig. 4. Even periodic auto-correlation properties of different spreading codes.

Fig. 5. Even periodic cross-correlation properties of different spreading codes.

The auto- and cross-correlation properties of the three spread codes under
different definition of correlation functions: even periodic, odd periodic and aperi-
odic correlation functions are shown in Figs. 4, 5, 6, 7, 8 and 9 respectively. As can
be seen from the simulated results, CCs are able to achieve ideal correlation prop-
erties (the auto-correlation is a delta function and the cross-correlation is a zero
function) under all the three definitions. Gold code just achieves approximate
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Fig. 6. Odd periodic auto-correlation properties of different spreading codes.

Fig. 7. Odd periodic cross-correlation properties of different spreading codes.

Fig. 8. Aperiodic auto-correlation properties of different spreading codes.

ideal auto-correlation property with even periodic correlation definition and
Walsh code just achieves approximate ideal cross-correlation property with even
periodic correlation definition. Therefore, a CDMA system with Gold code as
its spreading sequence performs better under MPI, while it with Walsh code
performs better under MPI. However, opposite phase between adjacent bits is
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Fig. 9. Aperiodic cross-correlation properties of different spreading codes.

usual. In this situation, the non-zero sidelobe in odd periodic auto-correlation
property of Gold, as shown in Fig. 6(a), will result in MPI, while the non-zero
sidelobe in odd periodic cross-correlation property of Gold, as shown in Fig. 7(b),
will result in MAI.

5 Conclusions and Discussions

This paper proves the ideal correlation properties of CCs with non-integral chip
delay under the definition of aperiodic correlation functions. The above com-
parisons of CCs with traditional spreading codes on auto- and cross-correlation
properties under different definitions of correlation functions verify the correct-
ness of the proof work and show that a CC-CDMA system is able to achieve MPI-
and MAI-free communication owning to the proved ideal aperiodic correlation
properties.

However, due to the two-dimensional nature of CCs, the implementation
of CC-CDMA system is a challenging work. In a direct sequence (DS) CC-
CDMA system, each user will be allocated a particular CC from a code set as its
signature code, and a user should spread its data with M element sequences of
CC, respectively. In order to realize the spreading and de-spreading processes as
definition of aperiodic correlation function, a CC-CDMA system must satisfies
the following four conditions:

(1) M streams of spread signals of one user are required to be transmitted
in M independent subchannels and separated at a receiver;

(2) each stream of spread signal should be de-spread using the right element
sequence of the CC allocated to the user at a receiver;

(3) each stream of spread signal should be synchronized and therefore they
have the same chip-delay;

(4) the de-spread signals with M element sequences should combined with
equal gains.

Therefore, it’s challenging to design and implement a CC-CDMA system. The
work [7] has present a comprehensive survey of existing literature in the area
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of CC-CDMA system and it divided the existing CC-CDMA solutions into two
categories: time division multiplex and frequency division multiplex CC-CDMA
systems, according to the kinds of independent sub-channels. However, both
of the two CC-CDMA system architecture have its problem on implementation
complexity or spread and spectrum efficiency. Therefore, as for the future works,
we will pursue to optimize the system deign of CC-CDMA systems.
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