
Optimization Spiking Neural P System
for Solving TSP

Feng Qi and Mengmeng Liu(&)

Shandong Normal University, Jinan, China
qfsdnu@126.com, 1783797657@qq.com

Abstract. Spiking neural P systems are a class of distributed and parallel
computing models that incorporate the idea of spiking neurons into P systems.
Membrane computing (MC) combining with evolutionary computing (EC) is
called evolutionary MC. In this work, we will combine SNPS with heuristic
algorithm to solve the travelling salesman problem. To this aim, an extended
spiking neural P system (ESNPS) has been proposed. A certain number of
ESNPS can be organized into OSNPS. Extensive experiments on TSP have been
reported to experimentally prove the viability and effectiveness of the proposed
neural system.

Keywords: OSNPS � GA � Membrane algorithm � TSP

1 Introduction

Membrane computing is one of the recent branches of natural computing. The obtained
models are distributed and parallel computing devices, usually called P systems. There
are three main classes of P systems investigated: cell-like P systems [1], tissue-like P
systems [2] and neural-like P systems [3]. Spiking Neural P system (SNPS, for short) is
a class of neural-like P systems, which are inspired by the method of biological neuron
processing information and communicating with others by means of electrical spikes.
Evolutionary computing (EC) is based in Darwin’s theory of evolution, simulating the
evolution process and structuring a kind of heuristic optimization algorithms with
characteristics of self-organization, adaptive and self-learning, such as genetic algo-
rithm, ant colony optimization, particle swarm optimization and so on.

MC combining with EC is called evolutionary membrane computing [4], in which
the membrane algorithm is a research direction. Membrane algorithm is a kind of
hybrid optimization algorithm which combines the structure of membrane system,
evolution rules, calculation mechanism and the principle of evolutionary computation.

The research on the membrane algorithm can be dated back to 2004 and Nishida
combined a membrane structure with the way of tabu search to solve the traveling
salesman problems [5]. In 2008, a one-level membrane structure combining with a
quantum-inspired evolutionary algorithm was put forward to solve knapsack problems
[6]. In 2013, a tissue membrane system was used to solve parameter optimization
problems [7]. These investigations indicate the feasibility of the P systems for multi-
farious optimization problems. But, at present, the membrane algorithm is mainly

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
X. Gu et al. (Eds.): MLICOM 2017, Part II, LNICST 227, pp. 668–676, 2018.
https://doi.org/10.1007/978-3-319-73447-7_71



focused on the cell-like P system and tissue-like P system. The research of membrane
algorithm on the neural-like P system is relatively few. In 2014, Professor Zhang
designed an optimization spiking neural P system [8], which can be used to solve the
knapsack problem-a famous NP complete problem. The results show that the design
optimization spiking neural P system has obvious advantages in solving knapsack
problems.

The Traveling Salesman Problem (TSP) is a widely studied NP-hard combinatorial
problem, and it’s famous for being difficult to solve. So, it is meaningful both in theory
and applications to develop techniques to solve such problems. In this paper, we
combine SNPS and genetic algorithm (GA) to solve the TSP. First, we design the
optimization SNPS (OSNPS), achieving the connection between the GA algorithm and
the membrane system. Second, we implement our ideas on the platform MATLAB.
The ideas of this article not only contribute to the membrane algorithm of the
neural-like P system, but also find a new way to solve the TSP.

2 Related Background

Generally, an SNP system is composed of neurons, spikes, synapses, and rules.
Neurons may contain a number of spikes, spiking rules and forgetting rules, and
directed connections between neurons and neurons are accomplished by synapses.
A neuron can send information to its neighboring neurons by using the spiking rule. By
using the forgetting rule, a number of spikes will be removed from the neuron, and thus
they are removed from the system.

An SNP system of degree m� 1 is a construct of the form:

Y
¼ O;r1;r2; � � � rm; syn; in; outð Þ

Where

• o ¼ af g is the alphabet, a is spike;
• r1;r2; � � �rm are neurons of the form ri ¼ ni;Rð Þ with 1� i�m. ni is a natural

number representing the initial number of spikes in neuron ri; R is set of rules in
each neuron of the following forms:

(a) E=ac ! a; d is the spiking rule, where E is the regular expression over af g; (c
and d are integer and c� 1; d� 0)

(b) as ! k is the forgetting rule, with the restriction that for any s� 1 and any
spiking rule E=ac ! a; d; as 62 L Eð Þ, where L(E) is set of regular languages
associated with regular expression E and k is the empty string;

• syn� 1; 2; :::;mf g � 1; 2; . . .;mf g is set of synapses between neurons, where i 6¼ j,
z 6¼ 0 for each i; jð Þ 2 syn, and for each i; jð Þ 2 1; 2; :::;mf g � 1; 2; :::;mf g there is
at most one synapse i; jð Þ in syn.

• In; out 2 1; 2; :::;mf g indicate the input and output neurons respectively.

Optimization Spiking Neural P System for Solving TSP 669



In SNP systems, spiking rules E=ac ! a; dð Þ can be applied in any neuron as
follows: if neuron ri contains k spikes a with ak 2 L Eð Þ and k� c , the spiking rule
E=ac ! a; d is enabled to be applied. By using the rule, c spikes a are consumed, thus
k� c spikes a remain in the neuron ri, and after d time units, one spike a is sent to all
neurons rj such that i; jð Þ 2 syn. For any spiking rule, if E ¼ ac, the rule is simply
written as ac ! a; d and if d ¼ 0, we can omit it, and then the spiking rules can be
written as ac ! a.

Rules of the form as ! k; s� 1 are forgetting rules with the restriction as 62 L Eð Þ
(that is to say, a neuron cannot apply the spiking rules and forgetting rules at the same
moment), where L Eð Þ is a set of regular languages associated with regular expression
E . k is the empty string. If neuron ri contains exactly s spikes, the forgetting rule
as ! k can be executed, and then s spikes are removed from the neuron.

The TSP is a class of problem that finding a shortest closed tour visiting each city
once and only once. Given a set c1; c2; . . .cnf g of n cities and symmetric distance
d ci; cj
� �

which gives the distance between city ci and cj, the goal is to find a permu-
tation p of these n cities that minimizes the following function:

Xn�1

i¼1
d cp ið Þ; cp iþ 1ð Þ
� �þ d cp nð Þ; cp 1ð Þ

� � ð1Þ

3 OSNPS for TSP

3.1 The Structure of OSNPS

The SNPS can be represented graphically. A directed graph is used to represent the
structure: the neurons connect with each other by the synapses; the output neuron emits
spikes to the environment using outgoing synapse.

Inspired by the fact that spiking neural P system can generate string languages or
spike trains [9], an extended spiking neural P system (ESNPS, for short) has been
proposed to produce a binary string, and corresponding probability string is used to
represent a chromosome. An ESNPS of degree m� 1 is shown in Fig. 1.

Each ESNPS consists of m neurons. r1;r2; . . .rm are neurons of the form ri ¼
1;Ri; Pið Þ with 1� i�m, where Ri ¼ r1i ; r

2
i

� �
(r1i ¼ a ! af g and r2i ¼ a ! kf g) is a

set of rules and Pi ¼ p1i ; p
2
i

� �
is a set of probabilities, where p1i and p2i are the selection

probabilities of rules r1i and r2i respectively, and p1i þ p2i ¼ 1. If the ith neuron spikes,
we get its output 1 and probability p1i , otherwise, we get its output 0 and p2i . That is to
say we get 1 by probability p1i and we get 0 by probability p2i .

For example, as for an ESNPS of degree m = 5, its probability matrix is shown in
below. If we get the spike train [0 0 1 1 0], then the corresponding probability vector is
[0.49 0.65 0.42 0.79 0.45].

p1i
p2i

���� 0:51 0:35 0:42 0:79 0:55
0:49 0:65 0:58 0:21 0:45

� �

670 F. Qi and M. Liu



From Fig. 2, we can see that a certain number of ESNPS can be organized into
OSNPS by introducing a guider to adjust the selection probabilities and adding a
subsystem (rmþ 1 and rmþ 2) to be the spikes supplier. OSNPS consists of H ESNPS,
ESNPS1, ESNPS2…, ESNPSH. Each ESNPS is identical (Fig. 1) and the operation
steps are illustrated in Subsect. 3.2. Thus, each ESNPS outputs a spike train at each
moment of time, and then OSNPS will output H binary string, and we can get the
corresponding probability matrix.

In the OSNPS, rmþ 1 ¼ rmþ 2 ¼ 1; a ! af gð Þ;rmþ 1 and rmþ 2 spike at each
time, send spike to each ESNPS and reload each other continuously. We record the
spike train matrix Tt (t is current evolution generation) outputted by OSNPS and the
corresponding probability matrix Pt. If we can adjust the probabilities, we can control
the outputted matrix. In this paper, we put GA algorithm as the guider algorithm to
adjust the probability.

Fig. 1. An example of ESNPS structure

Fig. 2. The structure of OSNPS

Optimization Spiking Neural P System for Solving TSP 671



We introduce the idea of smallest position value (SPV) [10] method into the genetic
algorithm and we give a Table 1 to explain this encoding and decoding method. We
put 2 4 1 3 5 as the city sequence.

The input of the guider is a spike train Tt with H�m bits. The output of the guider

is the rule probability matrix Pt ¼ pij
h i

H�m
, which is made up of the rule probabilities

of H ESNPS. Where pij is the probability of spiking rule or forgetting rule. For
example, as for an ESNPS of degree m = 5, one of the vectors mentioned above [0.49
0.65 0.42 0.79 0.45] could be a part of the Pt.

3.2 The Operation Steps

1. Initialize system parameters;
2. Neuron rmþ 1 and neuron rmþ 2 spike and supply neurons for H ESNPS. At the

same time, H ESNPS spike and output spike training matrix Tt(0–1matrix);
3. Put Tt into the guider and rearrange it as corresponding probability matrix Pt; We

put Pt as the initial population of GA and convert Pt to real matrix Mt by using the
SPV idea;

4. Calculate fitness function;
5. Selection operation: Roulette wheel selection algorithm and optimal individual

preservation strategy are used; we select the first ten percent of the best individual to
save;

6. Cross operation: Adopting OX crossover algorithm;
7. Mutation operation: Using transposition mutation techniques;
8. Judge whether the termination condition (the max generation) is met or not. If it

reached, output the final result, end; otherwise t ¼ tþ 1 and go to step 9;
9. We combine the updated probability matrix Pt with the corresponding 0–1 matrix Tt

to update the probability of each ESNPS and go to step 1;

In the implementation process of OSNPS, each of the neuron in ESNPS according
to the rules of probability to spike spiking rules or forgetting rules, which will increase
the population diversity (Fig. 3).

Table 1. An example of SPV

Dimension j Position Pij Sequence

1 0.65 2
2 0.32 4
3 0.87 1
4 0.46 3
5 0.21 5

672 F. Qi and M. Liu



4 Experimental Results

In this section, our system was implemented using matlab and tested on a personal PC
with Pentium IV 3.0 GHz CPU and 512 MB memory. The population size is taken as
30; Crossover probability pc ¼ 0:8 and the mutation probability pm ¼ 0:2. The max-
imum iteration number N is taken as 500. Since OSNPS mainly uses the combination
of SNPS and GA algorithm, we make a contrast experiment between the improved GA
algorithm in the guider and the OSNPS system (Figs. 4 and 5).

Through experiments, we can see that when the number of cities is 30, the results of
OSNPS are better than guider algorithm, but OSNPS find the optimum in 402 gen-
eration and guider algorithm in 247 generation (Fig. 6).

Fig. 3. The system flow diagram

Optimization Spiking Neural P System for Solving TSP 673



Fig. 4. 30 cities in guider algorithm

Fig. 5. 30 cities in OSNPS

674 F. Qi and M. Liu



5 Conclusion

In this paper, we proposed the OSNPS for solving the TSP. The OSNPS achieve the
connection between the GA algorithm and the membrane system. Experimental results
show that the OSNPS can effectively solve TSP and prevent GA algorithm from falling
into local optimum. The ideas of this article not only contribute to the membrane
algorithm of the neural-like P system, but also find a new way to solve the TSP.

Certainly, the OSNPS has some drawbacks in solving the TSP. When the scale of
the problem is getting bigger and bigger, the advantage of OSNPS is increasingly
obscure and the system need more time to solve problems than standard GA. So the
future work is to improve the SNP system or GA algorithm to optimize experimental
results.

Acknowledgment. This work was supported by the Natural Science Foundation of China
(No. 61502283). Natural Science Foundation of China (No. 61472231).

References

1. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)
2. Freund, R., Păun, G., Pérez-Jiménez, M.J.: Tissue-like P systems with channel-states. Theor.

Comput. Sci. 330, 101–116 (2005)
3. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fund. Inform. 71(2), 279–

308 (2006)
4. Zhang, G., Gheorghe, M., Pan, L., et al.: Evolutionary membrane computing: a

comprehensive survey. Inf. Sci. 279(1), 528–551 (2014)

Fig. 6. The searching process of OSNPS

Optimization Spiking Neural P System for Solving TSP 675



5. Nishida, T.Y.: An application of P systems: a new algorithm for NP-complete optimization
problems. In: Proceedings of 8th World Multi-Conference Systems, Cybernetics and
Informatics, pp. 109–112 (2004)

6. Zhang, G.X., Gheorghe, M., Wu, C.Z.: A quantum-inspired evolutionary algorithm based on
P systems for knapsack problem. Fund. Inform. 87(1), 93–116 (2008)

7. Zhang, G., Cheng, J., Gheorghe, M., Meng, Q.: A hybrid approach based on differential
evolution and tissue membrane systems for solving constrained manufacturing parameter
optimization problems. Appl. Soft Comput. 13(3), 1528–1542 (2013)

8. Zhang, G., Rong, H., Neri, F., et al.: An optimization spiking neural P system for
approximately solving combinatorial optimization problems. Int. J. Neural Syst. 24(05),
1440006 (2014)

9. Reeves, C.R.: A genetic algorithm for flowshop sequencing. Comput. Oper. Res. 22(1), 5–13
(1995)

10. Chen, H., Freund, R., Ionescu, M., et al.: On string languages generated by spiking neural P
systems. Fund. Inform. 75(75), 141–162 (2007)

676 F. Qi and M. Liu


	Optimization Spiking Neural P System for Solving TSP
	Abstract
	1 Introduction
	2 Related Background
	3 OSNPS for TSP
	3.1 The Structure of OSNPS
	3.2 The Operation Steps

	4 Experimental Results
	5 Conclusion
	Acknowledgment
	References


