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Abstract. In this paper, SE algorithm and C0 algorithm were described in
detail. The complexity characteristics of Lü chaotic system, Chua chaotic
memristive system, Bao hyperchaotic system, Chen hyperchaotic system are
analyzed based on SE algorithm and C0 algorithm. We have compared with the
dynamical characteristics of four systems by using the conventional dynamic
analysis methods and the methods of complexity, the comparative results
demonstrate that SE complexity and C0 complexity can reflect the complexity of
continuous chaotic systems accurately and effectually. Through the contrast for
the complexity characteristics of two continuous chaotic systems and two
continuous hyperchaotic systems, we can obtain that the varying trend of SE
complexity and C0 complexity have much well coherence, and it provides a
dynamical analytical method for the research of chaos theory.
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1 Introduction

Chaos theory is a nonlinear dynamical science which has been thriving over the past
decades. The application of chaos theory is more and more widely, especially in the
information security areas [1–3]. The complexity is an ability of the chaotic system can
generates random sequences, the value of complexity depend on the random degree
with the sequences. Thus, the scientific community has been paying more and more
attention to the algorithm of complexity in recent years.

The algorithms of complexity are generally divided into the algorithms based on
behavioral complexity (FuzzyEn algorithm [4–6] and SCM algorithm [7, 8]) and the
algorithms based on structural complexity (SE algorithm and C0 algorithm). The larger
the complexity of time series, the greater randomness, the more difficult the sequences
are restored to the original sequences.

During mid-20th century, Kolmogorov et al. have expounded the concept of
complexity, and at the same time they have put forward the Kolmogorov algorithm of
complexity [9]. However, it is only a rough research. At that time, because of the
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limitations with science and technology, it can also not verify the correctness by using
the computer. Until 1976, Lempel and Ziv presented the Limpel-Ziv algorithm [10] in
their papers, and this algorithm is also the sublimation of the Kolmogorov algorithm. It
is widely used in the fields of bio-medicine [11], weather forecasting [12] and cryp-
tography [13]. In 1991, Pincus introduced the algorithm of approximate entropy
(ApEn) [14]. Then in 2002, Bandt and Pompe developed the algorithm of permutation
entropy (PE algorithm) [15], it is also the improvement of ApEn algorithm. Although
these algorithms all can describe the complexity of continuous chaotic systems, but the
Limpel-Ziv algorithm only estimates the time scale of chaotic sequences simply, and it
needs coarse graining treatment for the non-pseudo-random sequences. When the
ApEn algorithm is used to deal with the variations of different embedding dimensions,
however, the problems of embedding dimensions and the resolution parameters will be
involved during the process of calculation, and the calculated results are also affected
by the subjective factors. At the same time, the calculated results of PE algorithm may
be influenced by many factors too. These algorithms above are fast to the calculation of
short sequences. While the length of the data increases to a certain amount, its cal-
culated speed would slow down, and the practicality would be lower. Compared to the
three algorithms, SE algorithm and C0 algorithm are used to calculate the value of
entropy based on Fourier transform (FFT). It not only has faster speed but also better
reflect the structures of related sequence, and it can also measure the complexity of
systems more effectively. Especially in the calculation of continuous stationary time
series, the advantages of SE algorithm and C0 algorithm are more obvious.

In this paper, we have analyzed the complexity characteristics of Lü chaotic system
[16], Chua chaotic memristive system [17], Bao hyperchaotic system [18] and Chen
hyperchaotic system [19] by using SE algorithm and C0 algorithm. Then, theirs cor-
rectness were verified too. Through the dynamic contrastive analysis for two contin-
uous chaotic systems and two continuous hyperchaotic systems, it shows that the
superiority of SE complexity algorithm and C0 complexity algorithm for calculating the
continuous chaotic sequences. Meanwhile, we can also see that the chaotic systems
have very rich dynamic characteristics. Finally, we compared and analyzed the max-
imum value and the average value of the four systems. The results shows that when we
do the research of chaotic systems, the continuous chaotic systems and the continuous
hyperchaotic systems are equivalent, there is no better or worse. All these above
provided the theoretical source and the experimental basis for the application of chaotic
theory.

2 SE Complexity Algorithm and C0 Complexity Algorithm

2.1 SE Complexity Algorithm

At present, there are several algorithms for measuring the complexity of chaotic
sequences. Among them, the SE [20–22] and C0 [23–25] complexity algorithms have
less parameters, faster calculation speed and higher accuracy. Spectral Entropy algo-
rithm gets the corresponding Shannon entropy value based on the Fourier transform,
the algorithm is described as follows:
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(1) Remove the direct-current: using Eq. (1) to remove the DC part of pseudo-random
sequence, which so that the spectrum can reflect the energy information of signal
more accurately.

xðnÞ ¼ xðnÞ � �x ð1Þ

where, �x ¼ ð1=NÞPN�1
n¼0 xðnÞ

(2) Do the discrete Fourier transform for Eq. (1)

XðkÞ ¼
XN�1

n¼0

xðnÞe�j2pN nk ¼
XN�1

n¼0

xðnÞWnk
N ð2Þ

in which, k = 0, 1, 2 …, N − 1

(3) Calculate the relative power spectrum: calculate the front half of X(k), then we
obtain the value of power spectrum in a certain frequency by using the Parseval
theorem.

pðkÞ ¼ 1
N

X(k)j j2 ð3Þ

where, k = 0, 1, 2 …, N/2 − 1, and the total power of sequence can be defined as:

ptot ¼ 1
N

XN=2�1

k¼0

XðkÞj j2 ð4Þ

So, the probability of relative power spectrum can be expressed as:

Pk ¼ pðkÞ
ptot

¼
1
N XðkÞj j2

1
N

PN=2�1

k¼0
XðkÞj j2

¼ XðkÞj j2PN=2�1

k¼0
XðkÞj j2

ð5Þ

where,
PN=2�1

k¼0
Pk ¼ 1

(4) Using Eqs. (3), (4) and (5), and the Shannon entropy, we can obtain the Spectral
Entropy (SE) of signal:

se ¼ �
XN=2�1

k¼0

Pk lnPk ð6Þ

If Pk = 0 in Eq. (6), we will define Pk ln Pk = 0. And, the value of spectrum
entropy converges to ln(N/2). In order to comparison and analysis, the spectral entropy
can be normalized. Then, we obtain the normalized spectral entropy:
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SEðNÞ ¼ se
lnðN=2Þ ð7Þ

Through the formulas above, we can obtain that the more unevenly the power
spectrum distribution of sequence, the more simple the structure of sequence, the
smaller the corresponding measured value.

2.2 C0 Complexity Algorithm

The main idea of C0 complexity algorithm is to divide the sequence into the regular
part and the irregular part, the proportion of irregular part is what we need. The
computational steps as follows:

(1) Do the discrete fourier transform for the time series

XðkÞ ¼
XN�1

n¼0

xðnÞe�2p
N nk ¼

XN�1

n¼0

xðnÞWnk
N ð8Þ

where, k = 0, 1, …, N − 1.

(2) Remove the regular part of Eq. (8), get the mean square value of X(k):

GN ¼ 1
N

XN�1

k¼0

XðkÞj j2 ð9Þ

The parameter r is added into Eq. (9), then retains the part which more than
the r multiples of the mean square value, meanwhile set the remaining parts are zero,
that is:

~XðkÞ ¼ XðkÞ; XðkÞj j2 [ rGN

0; XðkÞj j2\rGN

�
ð10Þ

(3) Do the Fourier inverse transform for Eq. (10)

exðnÞ ¼ 1
N

XN�1

k¼0

eXðkÞej2pN nk ¼ 1
N

XN�1

k¼0

eXðkÞW�nk
N ð11Þ

Where, n = 0, 1, …, N − 1

(4) With Eq. (11), the measure of C0 complexity is defined as:

C0ðr;NÞ ¼
XN�1

n¼0

xðnÞ � ~xðnÞj j ð12Þ
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The C0 complexity algorithm is calculated based on the fast Fourier transform
algorithm, which deleted the regular part of the sequence, and retained the irregular
part. The larger proportion of irregular part the sequence has, the higher value of
complexity.

3 Dynamical Analysis of Continuous Chaotic Systems

3.1 Dynamic Analysis of Lü Chaotic System

Lü chaotic system is described as follows:

_x ¼ aðy� xÞ
_y ¼ cy� xz
_z ¼ xy� bz

8<
: ð13Þ

The mathematical model of Lü chaotic system is the simplest structure in the
groups of Lorenz system. Setting the initial value is (1, 1, 1), and the time step is
0.001 s. We calculate the complexity characteristics by using SE algorithm and C0

algorithm. When the parameters a = 36, b = 3, c = 20, the steady-state values of
Lyapunov exponents are LE1 = 1.3657, LE2 = 0, LE3 = −20.3620. In this case, we
can calculate the corresponding Lyapunov dimension is 2.0671. The phase diagrams of
chaotic attractor in Lü system as shown in Fig. 1. With the parameter b changing, the
system is in chaotic state, periodic state, stable point state and so on. It shows that the
algorithms of SE complexity and C0 complexity can reflect the complexity of con-
tinuous chaotic systems accurately and effectually (Fig. 2).

3.2 Dynamic Analysis of Chua Memristive Chaotic System

The Chua chaotic circuit is a classical circuit system, it is also a very hot circuit model
of the scientific community in recent years. The Chua chaotic oscillation circuit is
realized by using the parallel connection of a flue-controlled memristor and a negative
conductance.
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Fig. 1. Chaotic attractor of Lü system: (a) x-y plane (b) x-z plane
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The equations of Chua circuit system is:

_x ¼ a½y� xþ dx�WðwÞx�
_y ¼ x� yþ z
_z ¼ �by� cz
_w ¼ x

8>><
>>: ð14Þ

In which,

qðwÞ ¼ gwþ hw3; WðwÞ ¼ dqðwÞ=dw ¼ gþ 3hw2 ð15Þ

Setting the initial value of Eq. (14) is (0.1, − 0.1, 0.1, 0.1), the time step is 0.001 s.
The complexity of x sequence is calculated by using SE algorithm and C0 algorithm.
When a = 10, b = 100/7, c = 0.1, d = 9/7, g = 1/7, h = 2/7, the steady-state values of
Lyapunov exponents spectrum are LE1 = 0.2935, LE2 = 0, LE3 = 0, LE4 = −3.3719.
Thus, the corresponding Lyapunov dimension is 3.0893. The Lyapunov exponents
spectrum in Chua chaotic system is shown as Fig. 5(a). The path of the system into the
chaotic state can be clearly seen from Fig. 5(b). All of these above show that the
algorithms of SE complexity and C0 complexity are right and effective dynamic
analysis methods (Figs. 3 and 4).
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Fig. 2. Dynamic characteristics of Lü system: (a) Lyapunov exponents spectrum (b) bifurcation
diagram (c) SE complexity (d) C0 complexity
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Fig. 3. Chaotic attractor of Chua memristive system: (a) x-y plane (b) x-w plane
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3.3 Dynamic Analysis of Bao Hyperchaotic System

To generate a hyperchaotic signal from an autonomous dissipative system, the state
equation of the system must satisfy the following two basic conditions: (1) The
dimension of the state equation must be at least four, and the order of the state equation
must be at least two. (2) The system has at least two positive Lyapunov exponents, and
the sum of all the exponents is less than 0. So, the method of obtaining the hyperchaotic
system is that adding a state feedback controller to the 3D continuous chaotic system.
The 4D Bao hyperchaotic circuit by adding a state controller to the 3D Bao chaotic
circuit.

According to the voltage-current characteristic relation of the circuit and the
mathematically treated, we can get the mathematical model of Bao hyperchaotic
system is:

_x ¼ aðx� yÞ
_y ¼ xz� cyþw
_z ¼ x2 � bz
_w ¼ dðxþ yÞ

8>><
>>: ð16Þ

Setting the initial value of Eq. (16) is (10, 10, 10, 10), the time step is 0.01 s.
When a = 20, b = 4, c = 32, d = 4, the steady-state values of Lyapunov exponents
spectrum are LE1 = 2.0722, LE2 = 0.0750, LE3 = 0, LE4 = −26.3259, and the corre-
sponding Lyapunov dimension is 3.0816. There are two positive Lyapunov exponents,
so the system is a hyperchaotic system. With the parameter d varying, the system goes
into the chaotic state from the hyperchaotic state. We can observed from the Fig. 6 that
SE complexity and C0 complexity also can precisely reflect the dynamical character-
istics as the same to the conventional dynamic analysis methods.
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Fig. 4. Dynamic characteristics of Chua memristive system: (a) Lyapunov exponents spectrum
(b) bifurcation diagram (c) SE complexity (d) C0 complexity

-40 0 40
0

50

100

x

z

(a)

-100 0 100
0

50

100

y
z

(b)

Fig. 5. Chaotic attractor of Bao hyperchaotic system: (a) x-z plane (b) y-z plane
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3.4 Dynamic Analysis of Chen Hyperchaotic System

Chen system belongs to the groups of Lorenz system too. A feedback term is added to
the equations of the classical 3D Chen system, and then we can get a 4D hyperchaotic
Chen system. Chen hyperchaotic system can be described as follows:

_x ¼ aðy� xÞþw
_y ¼ dx� xzþ cy
_z ¼ xy� bz
_w ¼ yzþ ew

8>><
>>: ð17Þ

Let the initial value of Eq. (17) is (1, 0, 1, 0), the time step is 0.01 s. The com-
plexity of x sequence is calculated by using SE algorithm and C0 algorithm. When
a = 35, b = 3, c = 12, d = 7, e = 0.083, the steady-state values of Lyapunov exponents
spectrum are LE1 = 0.3745, LE2 = 0.0405, LE3 = 0, LE4 = −26.3259. We can cal-
culate the corresponding Lyapunov dimension is 3.0158. The system has two positive
Lyapunov exponents under the certain conditions, so it is a hyperchaotic system. When
the parameter c varying, the state of system changing within periodic state, chaotic state
and hyperchaotic state. The results of dynamic analysis in Fig. 10 are correspondence,
it also shows that SE algorithm and C0 algorithm are very correct and necessary for the
dynamical analysis of the chaotic system (Figs. 7 and 8).

3.5 Analysis of Complexity Characteristics for Continuous Chaotic
Systems

Using the SE complexity algorithm and C0 complexity algorithm, the complexity of
four different continuous chaotic systems are compared and analyzed. The maximum
value of complexity and the average value of complexity as shown in Table 1. We can
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Fig. 6. Dynamic characteristics of Bao hyperchaotic system: (a) Lyapunov exponents spectrum
(b) bifurcation diagram (c) SE complexity (d) C0 complexity
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obtain that the maximum value of complexity generated in Chen hyperchaotic system,
the maximum average value of complexity generated in Lü chaotic system. And the
minimum value of complexity generated in Chua memristive chaotic system, the
minimum average value of complexity generated in Chua memristive chaotic system
too. Through the comparative analysis to the Lü chaotic system and the Bao hyper-
chaotic system, we can see that the value of complexity in hyperchaotic system is not
necessarily greater than that in chaotic system. Thus, the relationship of size of com-
plexity in the different systems cannot be determined. The Table 2 shows the com-
plexity of continuous chaotic systems in the chaotic state and the hyperchaotic state.
Through the comparative analysis for the complexity of Chen hyperchaotic system in
the chaotic state and in the hyperchaotic state, we can know that for a same system, the
value of complexity in the hyperchaotic state is not necessarily greater than that in
chaotic state. All the results show that the size of complexity for the different states in
different chaotic systems can also not be determined. But, the varying tendencies of SE
complexity and C0 complexity are basically consistent.
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Table 1. Analysis of complexity characteristics for continuous chaotic systems

SEmax SE C0max C0

Lü chaotic system 0.7318 0.5834 0.5598 0.3756
Chua chaotic system 0.4593 0.2422 0.0677 0.0382
Bao hyperchaotic system 0.7195 0.3432 0.1415 0.0426
Chen hyperchaotic system 0.7428 0.4948 0.6220 0.2838

Table 2. Analysis of complexity characteristics in the chaotic state and the hyperchaotic state

System SEmax SE C0max C0

Lü chaotic system Chaotic state 0.7318 0.6662 0.5598 0.4436
Chua chaotic system Chaotic state 0.4593 0.4027 0.0677 0.0449
Bao hyperchaotic system Chaotic state 0.6877 0.6160 0.1209 0.0740

Hyperchaotic state 0.7195 0.7026 0.1415 0.1260
Chen hyperchaotic system Chaotic state 0.7428 0.6839 0.6220 0.4714

Hyperchaotic state 0.6623 0.6313 0.3810 0.3041
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4 Conclusion

In this paper, we have done the analysis of complexity characteristics by using SE
algorithm and C0 algorithm for two chaotic systems and two hyperchaotic systems.
From the results of comparison and analysis, we can obtain that the following con-
clusions: (1) SE complexity and C0 complexity can reflect the complexity of contin-
uous chaotic systems accurately and effectually. (2) For the different systems, the value
of complexity in hyperchaotic system is not necessarily greater than that in chaotic
system. For the same system, the value of complexity in hyperchaotic state is not
necessarily greater than that in chaotic state. Generally, the maximum value of com-
plexity generated in the chaotic state or the hyperchaotic state. The complexity char-
acteristic of chaotic system is its inherent property, which is decided by the variation of
parameters and the selection of initial value. Therefore, when we choose the chaotic
system to study, the chaotic state and the hyperchaotic state all can be used as the
experimental subjects, there is no better or worse. That is to say, when we choose the
research object, the chaotic system and the hyperchaotic system are equivalent. (3) The
varying tendency of SE complexity and C0 complexity are basically consistent.
Because they all reflect the complexity of sequence based on Fourier transform.
However, the difference which between the specific value of two algorithms is larger,
this is determined by the algorithm itself. (4) The value of complexity varying within a
certain range, that is the complexity of continuous chaotic system has boundedness.
This is one of the inherent characteristics with chaotic system. The research based on
complexity characteristics of SE algorithm and C0 algorithm, which provide a relevant
theoretical basis and an experimental guidance for the applications of cryptography,
secure communication and information security.
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